
1

2

Table of Contents

Executive Summary 4

Project Context 4

Redbelly Network Project Leadership 7

Smart Contract Audit Scope 8

Penetration Test Scope 10

Security Rating 11

Standardised Checks 13

Intended Smart Contract Functions 15

Function List 18

Code Quality 24

Audit Resources 25

Dependencies 25

Severity Definitions 26

Smart Contract Audit Findings 26

Additional Contracts Smart Contract Audit Findings 60

Final Audit Round Findings 73

Penetration Test Summary 90

Penetration Test Findings 92

Centralisation 112

Conclusion 113

Our Methodology 114

Disclaimers 116

About Hashlock 117

Hashlock Pty Ltd

3

CAUTION

THIS DOCUMENT IS A SECURITY AUDIT REPORT AND MAY CONTAIN
CONFIDENTIAL INFORMATION. THIS INCLUDES IDENTIFIED
VULNERABILITIES AND MALICIOUS CODE WHICH COULD BE USED TO
COMPROMISE THE PROJECT. THIS DOCUMENT SHOULD ONLY BE FOR
INTERNAL USE UNTIL ISSUES ARE RESOLVED. ONCE VULNERABILITIES ARE
REMEDIATED, THIS REPORT CAN BE MADE PUBLIC. THE CONTENT OF THIS
REPORT IS OWNED BY HASHLOCK PTY LTD FOR USE OF THE CLIENT.

Hashlock Pty Ltd

4

Executive Summary

The Redbelly Network team partnered with Hashlock to conduct a penetration test of

their layer 1 network and a smart contract audit of their embedded smart contracts.

Hashlock manually and proactively reviewed the code in order to ensure the Redbelly

Network team and community is ready for mainnet deployment.

Project Context
Redbelly Network is a soon to launch Layer 1 Network that focuses on real world assets,

KYC, institutional use cases and compliance. The Redbelly Network was born out of the

University of Sydney and the CSIRO, and has grown into a fully fledged team who has

made innovations into the technology and verified them via formal verification and

extensive auditing. The Redbelly Network team engaged Hashlock to ensure that their

protocol is ready for launch.

Project Name: Redbelly Network

Properties: SEVM Compatible, Golang and Solidity Code

Compiler Version: ^0.8.9

Hashlock Pty Ltd

5

Logo:

Visualised Context:

Hashlock Pty Ltd

6

Project Visuals:

Hashlock Pty Ltd

7

Redbelly Network Project Leadership

Title Name Photo Links

CEO Alan Burt https://www.linkedin.c
om/in/alan-burt/

CTO & Founder Vincent Gramoli https://www.linkedin.c
om/in/vincent-gramoli
-206148a/

COO Kim Bartlett https://www.linkedin.c
om/in/kim-bartlett-74
a72117/

Hashlock Pty Ltd

8

CGO Tim Bass https://www.linkedin.c
om/in/tim-bass-96262
198/

Hashlock Pty Ltd

9

Smart Contract Audit Scope
We at Hashlock audited the solidity code within the Redbelly Network Project, the scope

of works included a comprehensive review of the smart contracts listed below. We

tested the smart contracts to check for their security and efficiency. These tests were

undertaken primarily through manual line by line analysis and were supported by

software assisted testing.

Description Project Review and Security Analysis Report for
Redbelly Network Smart Contracts and other
factors.

Language Solidity

Audit Date May - December, 2023

Contract 1 ActivityMonitor.sol

Contract 1 MD5 Hash CADD74EB4390C14FAD71485D96015530

Contract 2 Authorizable.sol

Contract 2 MD5 Hash 3BA17E2A46B847BB831DB3F9C2F2A7C9

Contract 3 BootstrapContractRegistry.sol

Contract 3 MD5 Hash 8F184463D32C2A51E5E36BB4014FED4F

Contract 4 GasFees.sol

Contract 4 MD5 Hash EA88443EA7B1EDEEB85AF3AFE6229513

Contract 5 IDPRegistry.sol

Contract 5 MD5 Hash F80659599F1E2CFB7BB8F13622D2F16B

Contract 6 MockPriceFeed.sol

Contract 6 MD5 Hash F8E454B599A88A974D952AE2684B09FC

Contract 7 JailedGovernors.sol

Contract 7 MD5 Hash 8011E8C1378207468D91588EE04865ED

Contract 8 MockRandomNumberGenerator.sol

Contract 8 MD5 Hash 3C0B85DE97A5D4E1C340687E034ADFA7

Hashlock Pty Ltd

10

Contract 9 NetworkConfiguration.sol

Contract 9 MD5 Hash FF964C4895E96D5D8A938EBDB4518FFB

Contract 10 Permission.sol

Contract 10 MD5 Hash 655348C6FF54CCB5CFFB3C56CE15C9FD

Contract 11 RBAC.sol

Contract 11 MD5 Hash CC1C1B569A3A39E4CD48F0DCAC1FC4A0

Contract 12 Reconfiguration.sol

Contract 12 MD5 Hash 1727098E8F0A38AF41D1FC212A537154

Contract 13 StakingDeposit.sol

Contract 13 MD5 Hash A0767D73EB7A456C28DA4021AFAFF30B

Contract 14 Voting.sol

Contract 14 MD5 Hash 4FD99C2E4CA1CFCB9896A3B17EC20C47

Contract 15 TestPseudoRandomNumberGenerator.sol

Contract 15 MD5 Hash 4cabf4eac064a6d293b9f7180e22f72b

Hashlock Pty Ltd

11

Penetration Test Scope

Description Penetration Test for Layer 1 Core Network Infrastructure

Primary
Language GoLang

Audit Date May - December, 2023

Repo Name Repo Link Repo Description

sevm
https://github.com/redbellynetw
ork/sevm

The SEVM (Ethereum Virtual
Machine)

consensus
https://github.com/redbellynetw
ork/consensus

The consensus system to verify
transactions

consensus-driver
https://github.com/redbellynetw
ork/consensus-driver

The middleware to allow the
consensus system to talk to the
SEVM

diablo-benchmark
https://github.com/redbellynetw
ork/diablo-benchmark

A benchmarking tool used to test
the above systems

Hashlock Pty Ltd

https://github.com/redbellynetwork/sevm
https://github.com/redbellynetwork/sevm
https://github.com/redbellynetwork/consensus
https://github.com/redbellynetwork/consensus
https://github.com/redbellynetwork/consensus-driver
https://github.com/redbellynetwork/consensus-driver
https://github.com/redbellynetwork/diablo-benchmark
https://github.com/redbellynetwork/diablo-benchmark

12

Security Rating

After our audit and analysis, we found the smart contracts to be “Hashlocked” and the
layer 1 to be “Hashlocked”. The code follows simple logic, with correct and detailed
ordering. They use a series of interfaces, and the contracts use a list of Open Zeppelin
contracts.

All issues identified have since been resolved, actioned, or acknowledged and then
re-reveiwed.

Smart Contracts:

Hashlock found:

20 High severity vulnerabilities

16 Medium severity vulnerabilities

28 Low severity vulnerabilities

20 Gas Optimisations

Layer 1 Network:

The ‘Hashlocked’ rating is reserved for projects that ensure ongoing security via bug bounty programs or
on chain monitoring technology.

Hashlock found:

5 High severity vulnerabilities

12 Medium severity vulnerabilities

45 Low severity vulnerabilities

All issues uncovered during automated and manual analysis were meticulously reviewed

and fixed and applicable vulnerabilities are presented in the Audit overview section.

General overview is presented in the Function list section and all identified issues can be

found in the Audit overview section.

Hashlock Pty Ltd

13

Caution: Hashlock’s audits do not guarantee a project's success or ethics, and are not

liable or responsible for security. Always conduct independent research about any

project before interacting.

Hashlock Pty Ltd

14

Standardised Checks

Main Category Subcategory Result

General Code
Checks

Solidity/compiler version stated Passed

Consistent pragma version across each contract Passed

Outdated Solidity Version Reviewed

Overflow/underflow Passed

Correct checks, effects, interaction order Reviewed

Lack of check on input parameters Reviewed

Function input parameters check bypass Reviewed

Correct Access control Reviewed

Built in emergency features Reviewed

Correct event logs Reviewed

Human/contract checks bypass Reviewed

Random number generation/use vulnerability Passed

Fallback function misuse Passed

Race condition Passed

Logical vulnerability Reviewed

Features claimed Passed

delegatecall() vulnerabilities Passed

Other programming issues Reviewed

Code
Specification

Correctly declared function visibility Passed

Correctly declared variable storage location Passed

Use keywords/functions to be deprecated Passed

Unused code Reviewed

Gas
Optimization

“Out of Gas” Issue Passed

High consumption ‘for/while’ loop Reviewed

Hashlock Pty Ltd

15

High consumption ‘storage’ storage Passed

Assert() misuse Passed

Tokenomics
Risk

The maximum limit for mintage not set Passed

“Short Address” Attack Passed

“Double Spend” Attack Passed

Initial Audit Result: VULNERABLE

Revised Audit Result: PASSED

Hashlock Pty Ltd

16

Intended Smart Contract Functions

Claimed Behaviour Actual Behaviour

File 1 ActivityMonitor.sol

The authorised user has control over the following

functions:

● Set to the current activity monitor address.

● Sets the value of days to serve in jail for the

governor.

● Slashes the governor stake.

● Remove the slashing of the governor stake.

Contract achieves this

functionality.

File 2 Authorizable.sol

● Authorizable allows restricting actions to

authorised users.

● Maintains a list of authorised users and allows

users to add / remove users to the list.

Contract achieves this

functionality.

File 3 BootstrapContractRegistry.sol

The authorised user has control over the following

functions:

● Update/overwrite the bootstrap contract in the

registry.

Contract achieves this

functionality.

File 4 GasFees.sol

The authorised has control over the following

functions:

● Update the gas fee.

● Update the currency value

● Update value of decimals.

● Add/remove authorised users.

Contract achieves this

functionality.

File 5 IDPRegistry.sol

The owner has control over the following functions:

Contract achieves this

functionality.

Hashlock Pty Ltd

17

● Update/remove user ID or issuer ID.

File 6 MockPriceFeed.sol

● Current price of 1 RBNT in USD.

● New price of 1 RBNT in USD.

The owner has control over the following functions:

● Set a new price.

Contract achieves this

functionality.

File 7 JailedGovernors.sol

● This contract can expect to hold additional future

logic of movement of governor states.

Contract achieves this

functionality.

File 8 MockRandomNumberGenerator.sol

● This contract is used for generating random

numbers.

Contract achieves this

functionality.

File 9 NetworkConfiguration.sol

The owner has control over the following functions:

● Update voting contract address.

● Update reconfiguration contract address.

● Add/remove the governor addresses.

● Add/remove the redbelly nodes addresses.

Contract achieves this

functionality.

File 10 Permission.sol

● Permission allows anybody to verify their

identity.

The authorised user has control over the following

functions:

● Adds a user to the list of authorised users.

Contract achieves this

functionality.

File 11 RBAC.sol

● RBAC is used to initialise redbelly role, idp role,

owner role.

Contract achieves this

functionality.

File 12 Reconfiguration.sol Contract achieves this

Hashlock Pty Ltd

18

The authorised user has control over the following

functions:

● Update value of tolerance factor.

● Withdraw balance.

● Set the unlock time interval reconfiguration

interval.

functionality.

File 13 StakingDeposit.sol

● This contract can expect to hold additional future

logic.

Contract achieves this

functionality.

File 14 Voting.sol

The authorised user has control over the following

functions:

● Update the voting period,

● Update the eligible voter details.

● Setting vote status yes/no/abstain/closed.

● Add/cancel proposals.

Contract achieves this

functionality.

Hashlock Pty Ltd

19

Function List

Redbelly Network Contracts

- ActivityMonitor
- Authorizable
- BootstrapContractsRegistry
- GasFeesContract
- IDPRegistry
- JailedGovernors
- NetworkConfigurationContract
- Permission
- RBAC
- ReconfigurationContract
- StakingDeposit
- VotingContract

Functions

Functions Visibility Observation Conclu
sion

1 constructor - ActivityMonitor Public No
Issue

2 updateJailOwner -
ActivityMonitor

External OnlyAuthUser No
Issue

4 setSlashPrcnt - ActivityMonitor External OnlyAuthUser No
Issue

7 setDaysToServe -
ActivityMonitor

External OnlyAuthUser No
Issue

8 slashStake - ActivityMonitor External OnlyAuthUser No
Issue

9 revertSlash - ActivityMonitor External OnlyAuthUser No
Issue

10 constructor - Authorizable Public No
Issue

11 authorizeUser - Authorizable External onlyAuthorizedUser No
Issue

12 unauthorizeUser - Authorizable External onlyAuthorizedUser No
Issue

Hashlock Pty Ltd

20

13 constructor -
BootstrapContractsRegistry

Public No
Issue

14 Register -
BootstrapContractsRegistry

External onlyAuthorizedUser No
Issue

15 constructor - GasFeesContract Public No
Issue

16 getBaseGasFee -
GasFeesContract

Public No
Issue

17 updateGasFee -
GasFeesContract

Public OnlyAuthUser No
Issue

18 updateCurrency -
GasFeesContract

Public OnlyAuthUser No
Issue

19 updateDecimals -
GasFeesContract

Public OnlyAuthUser No
Issue

20 addAuthUser -
GasFeesContract

Public OnlyAuthUser No
Issue

21 removeAuthUser -
GasFeesContract

Public OnlyAuthUser No
Issue

22 Initialize - IDPRegistry Public initializer No
Issue

23 register - IDPRegistry External onlyRedbelly No
Issue

24 getAll - IDPRegistry External No
Issue

25 getByUid - IDPRegistry External No
Issue

26 getByIssuerDid - IDPRegistry External No
Issue

27 updateByUid - IDPRegistry Public onlyIDP No
Issue

28 updateByIssuerDid -
IDPRegistry

External onlyIDP No
Issue

29 removeByUid - IDPRegistry Public onlyRedbelly
idpExists(uid)
notDeleted(uid)

No
Issue

Hashlock Pty Ltd

21

30 removeByIssuerDid -
IDPRegistry

External onlyRedbelly
nonEmptyString(issue

rDid,...)
issuerDidExists(issuer

Did)

No
Issue

31 getDeletedCount - IDPRegistry private No
Issue

32 constructor - JailedGovernors Public No
Issue

33 jail - JailedGovernors External onlyOwner No
Issue

34 free - JailedGovernors External onlyOwner No
Issue

35 setSlashPrcnt - JailedGovernors External onlyOwner No
Issue

36 setOwner - JailedGovernors External No
Issue

37 setDaysToServe -
JailedGovernors

External onlyOwner No
Issue

38 receive - JailedGovernors External No
Issue

39 constructor -
NetworkConfigurationContract

Public No
Issue

40 updateReconfigurationContract
Address -
NetworkConfigurationContract

Public onlyGovernors No
Issue

41 updateVotingContractAddress
-
NetworkConfigurationContract

Public onlyAdmin No
Issue

42 Register -
NetworkConfigurationContract

Public No
Issue

43 addGovernor -
NetworkConfigurationContract

Public onlyGovernors No
Issue

44 removeGovernor -
NetworkConfigurationContract

Public onlyGovernors No
Issue

45 addRedbellyNodes -
NetworkConfigurationContract

public OnlyRedbellyNodes No
Issue

Hashlock Pty Ltd

22

46 removeRedbellyNodes -
NetworkConfigurationContract

public OnlyRedbellyNodes No
Issue

47 isGovernor -
NetworkConfigurationContract

public No
Issue

48 getCandidateIndex -
NetworkConfigurationContract

public No
Issue

49 isBannedNode -
NetworkConfigurationContract

public No
Issue

50 getGovernors -
NetworkConfigurationContract

public No
Issue

51 getCandidates -
NetworkConfigurationContract

public No
Issue

52 getNetworkSize -
NetworkConfigurationContract

public No
Issue

53 getGovernorRedbellyNodeCoun
t -
NetworkConfigurationContract

private No
Issue

54 getNodeConfigurationsByAddre
sses -
NetworkConfigurationContract

public No
Issue

55 setReconfigurationBiasness -
NetworkConfigurationContract

public OnlyRedbellyNodes No
Issue

56 swapNodesWithIndexes -
NetworkConfigurationContract

private No
Issue

57 runBiasedReconfiguration -
NetworkConfigurationContract

private No
Issue

58 reconfigureNetwork -
NetworkConfigurationContract

public OnlyReconfigurationC
ontract

No
Issue

59 getRandomIndex -
NetworkConfigurationContract

public No
Issue

60 banGovernorNode -
NetworkConfigurationContract

public OnlyVotingContract No
Issue

61 Request Permission External No
Issue

62 isAllowed Permission External No
Issue

Hashlock Pty Ltd

23

63 _authorizeUser Permission private No
Issue

64 Initialize RBAC public onlyInitializing No
Issue

65 __AccessControl_init RBAC internal onlyInitializing No
Issue

66 __AccessControl_init_unchaine
d RBAC

internal onlyInitializing No
Issue

67 supportsInterface RBAC public No
Issue

68 hasRole RBAC public No
Issue

69 _checkRole RBAC internal No
Issue

70 _checkRole RBAC internal No
Issue

71 getRoleAdmin RBAC public No
Issue

72 grantRole RBAC public No
Issue

73 revokeRole RBAC public No
Issue

74 renounceRole RBAC public No
Issue

75 _setupRole RBAC internal No
Issue

76 _setRoleAdmin RBAC internal No
Issue

77 _grantRole RBAC internal No
Issue

78 _revokeRole RBAC internal No
Issue

79 constructor
ReconfigurationContract

public No
Issue

80 setReconfigurationInterval
ReconfigurationContract

public onlyAuthorizedAccess No
Issue

Hashlock Pty Ltd

24

81 Receive
ReconfigurationContract

External onlyAuthorizedAccess No
Issue

82 withdrawBalance
ReconfigurationContract

public onlyAuthorizedAccess No
Issue

83 updateToleranceFactor
ReconfigurationContract

public onlyAuthorizedAccess No
Issue

84 triggerReconfiguration
ReconfigurationContract

public onlyAfterReconfigInte
rval

No
Issue

85 getRandomIndexes
ReconfigurationContract

internal No
Issue

86 Deposit StakingDeposit External No
Issue

87 Redeposit StakingDeposit External No
Issue

88 confiscateStake StakingDeposit External No
Issue

89 releaseStake StakingDeposit External No
Issue

90 stakeConfiscated
StakingDeposit

External No
Issue

91 Receive StakingDeposit External No
Issue

92 constructor VotingContract public No
Issue

93 isAuthorisedUser
VotingContract

private No
Issue

94 updateVotingPeriod
VotingContract

public onlyAuthorisedUser No
Issue

95 updateVotingDelay
VotingContract

public onlyAuthorisedUser No
Issue

96 isThresholdReached
VotingContract

private No
Issue

97 isEligibleVoter VotingContract public No
Issue

98 updateEligibleVoter
VotingContract

public OnlyNetworkConfigur
ationContract

No
Issue

Hashlock Pty Ltd

25

99 addProposal VotingContract public onlyEligibleVoters No
Issue

100 voteYes VotingContract public onlyEligibleVoters No
Issue

101 voteNo VotingContract public onlyEligibleVoters No
Issue

102 voteAbstain VotingContract public onlyEligibleVoters No
Issue

103 endVoting VotingContract public onlyEligibleVoters
votingPeriodEnded

No
Issue

104 cancelProposal VotingContract public activeProposal.owner No
Issue

105 banGovenor VotingContract public proposalActivated
onlyAuthorisedUser

No
Issue

106 resetVoting VotingContract private No
Issue

Code Quality
This audit scope involves the solidity smart contracts of the Redbelly Network project,

as outlined in the Audit Scope section. All contracts, libraries and interfaces intend to

follow standard best practices and to help avoid unnecessary complexity that increases

the likelihood of exploitation, however some refactoring is required.

The code is extremely well commented and closely follows best practice nat-spec

styling. All comments are correctly aligned with code functionality.

Hashlock Pty Ltd

26

Audit Resources

We were given the Redbelly Network Protocol’s smart contract code in the form of

Github access.

As mentioned above, code parts are well commented. The logic is straightforward, and

therefore it is easy to quickly comprehend the programming flow as well as the complex

code logic. The comments are helpful in understanding the overall architecture of the

protocol.

Dependencies
As per our observation, the libraries used in this smart contracts infrastructure are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

Hashlock Pty Ltd

27

Severity Definitions

Significance Description

High

High severity vulnerabilities can result in loss of funds,
asset loss, access denial, and other critical issues that
will result in the direct loss of funds and control by the
owners and community.

Medium
Medium level difficulties should be solved before
deployment, but won't result in loss of funds.

Low
Low level vulnerabilities are areas that lack best practices
that may cause small complications in the future.

Gas Gas Optimisations, issues and inefficiencies

Hashlock Pty Ltd

28

Smart Contract Audit Findings

High
[H-01] StakingDeposit#deposit - Arbitrary `amount` input parameter allows user to
have any staked amount

Description

The `deposit` function creates a `Deposit` struct where the `depositedAmount` value is
set to `amount`, which can be arbitrarily set in the function arguments.

function deposit(

address pubAddr,

address withdrawalAddr,

bool acceptDelegation,

uint256 amount

) external payable {

//.....function body......

depositors[msg.sender] = Depositors(

pubAddr,

address(0x00),

withdrawalAddr,

false,

acceptDelegation,

Deposit(amount, block.timestamp, 0)

);

...

}

Vulnerability Details

A malicious user can call `deposit` with an absurdly high `amount` such as
`type(uint256).max`. The system will take that amount as their `depositedAmount`,
regardless of the value of `msg.value`.

Impact

The malicious user can use their unnaturally large `depositedAmount` to drain the
`StakingDeposit` contract by calling `confiscateStake` on themself.

If the Redbelly Network relies on the amount of stake for governance or consensus,
then the security of the network can be compromised as the malicious user would have
an unnaturally large amount of stake.

Hashlock Pty Ltd

29

Recommendation

Instead of taking in an arbitrary `amount` as an input parameter, set the depositor’s
`depositedAmount` as the `msg.value`

require(msg.value > 0, "Deposit should be greater than 0");

depositors[msg.sender] = Depositors(

pubAddr,

address(0x00),

withdrawalAddr,

false,

acceptDelegation,

Deposit(amount, block.timestamp, 0)

);

Status

Resolved

[H-02] StakingDeposit#redeposit - Function is not payable and allows arbitrary
`amount` input parameter

Description

Similar to [C-01], the `redeposit` function allows an arbitrary `amount` to be added to
the depositor’s `depositedAmount`.

function redeposit(address pubAddr, uint256 amount) external {

//.....function body......

//----increase the total deposit amount of a depositor----

//.....function body......

}

Vulnerability Details

Similar to [H-01], but in this case, there is no `msg.value` so the amount deposited into
the contract will always be 0.

Impact

Refer to [H-01].

Recommendation

Instead of taking in an arbitary `amount` as an input parameter, set the `redeposit`
function as `payable` and use the following line:

depositors[msg.sender].deposit.depositedAmount += amount;

Hashlock Pty Ltd

30

Status

Resolved

Redbelly
The redeposit function which is mentioned in this story has been removed in the latest
code

[H-03] StakingDeposit - Missing access control in slashing functions can result in
the contract being insolvent or drained

Description

`confiscateStake` and `releaseStake` do not have access control and can be called by
anyone with arbitrary input.

Vulnerability Details

`confiscateStake`:
Arbitrary calls to `confiscateStake` allows any malicious user to slash and steal all the
stake of all depositors. This can be done with multiple calls to `confiscateStake` where
`_amountPrcnt = 100`.

The malicious user can also combine an exploit of [H-01] with [H-03] to drain the
contract in a quicker manner.

`releaseStake`
`releaseStake` can be called to refund a slashed depositor their confiscated stake after
`confiscateStake` has been called.

function releaseStake(address _depositor) external {

require(

depositors[_depositor].deposit.confiscatedAmount > 0,

"No confiscation"

);

depositors[_depositor].deposit.depositedAmount =

depositors[_depositor].deposit.depositedAmount +

depositors[_depositor].deposit.confiscatedAmount;

depositors[_depositor].deposit.confiscatedAmount = 0;

}

However, `confiscateStake` transfers the confiscated underlying asset to the caller,
meaning that the underlying assets to back the deposit are now missing.

function confiscateStake(address _depositor, uint8 _amountPrcnt) external {

...

payable(msg.sender).transfer(confiscationAmount);

Hashlock Pty Ltd

31

}

The refund of underlying assets is handled in `JailedGovernors.free`, but the
`releaseStake` function does not implement access control and so depositors can be
refunded their balance without the underlying assets to back them.

Impact

Missing access control in `confiscateStake` will result in the contract being drained of all
its native assets.

Missing access control in `releaseStake` will result in the contract being insolvent as
deposits aren’t sufficiently backed by the contract balance.

Recommendation

Add access control to `confiscateStake` and `releaseStake` so they can only be called by
the `JailedGovernors` contract.

Status

Unresolved

[H-04] JailedGovernors#setOwner - A malicious user can front-run the transaction
to become the owner

Description

The `setOwner` function initially allows anyone to call it since `ownerSet` is `false` by
default. A malicious user can front-run the rightful transaction that calls `setOwner` to
steal ownership of the contract.

Vulnerability Details

The `JailedGovernors` contract is deployed initially without an owner. An owner has to
be set after deployment by calling `setOwner`, which allows anyone to set the owner.

function setOwner(address _owner) external {

if (!ownerSet || msg.sender == owner) {

owner = _owner;

ownerSet = true;

} else {

revert("Unauthorised");

}

}

A malicious user can front-run the rightful transaction that calls `setOwner`, setting
themself as the owner instead.

Hashlock Pty Ltd

32

Impact

The malicious user will have control over the contract and its methods.

`ActivityMonitor` will not be able to be deployed as the `setOwner` call in the constructor
will revert.

constructor(

...

jailedGovernors.setOwner(address(this));

}

Recommendation

Assign a temporary owner to `JailedGovernors` inside the constructor. The temporary
owner can then transfer ownership to `ActivityMonitor` afterwards.

Status

Resolved

Hashlock
`setOwner` function has been removed

[H-05] MockPriceFeed - Feed updates do not get time stamped and can report stale
prices.

Description

The price feed design is flawed as it reports the price value without a timestamp or
round ID. A contract that uses the price feed will not be able to determine the freshness
of the price it’s served.

Vulnerability Details

The setPrice function allows any authorised user to set the current price of the asset.

/// @notice Sets a new price

/// @dev Emits the PriceUpdated event

/// @param newPrice New price of 1 RBNT in USD

function setPrice(uint256 newPrice) external override onlyAuthorizedUser {

price = newPrice;

emit PriceUpdated(newPrice);

}

Hashlock Pty Ltd

33

However, there is no state variable that keeps track of when the price was last updated.
In the event that authorised users fail to update the price, the price feed will report a
stale price.

Impact

Contracts that use the price feed will have no indication of knowing whether the price
reported from the feed is up-to-date or not.

Recommendation

Keep track of the times when the price feed is updated by adding a new state variable
`lastUpdated`. This state variable should be updated each time `setPrice` is called, and
should also be returned when calling `getLatestPrice`.

contract MockPriceFeed is IPriceFeed, Authorizable {

/// @notice Maintains price of RBNT in USD

uint256 private price;

uint256 private lastUpdated;

constructor(uint256 _price, address[] memory authorizedUsers)

Authorizable(authorizedUsers) {

price = _price;

lastUpdated = block.timestamp;

}

/// @notice Fetch the latest price of token

/// @return Current price of 1 RBNT in USD

function getLatestPrice() external view override returns (uint256, uint256) {

return (price, lastUpdated);

}

/// @notice Sets a new price

/// @dev Emits the PriceUpdated event

/// @param newPrice New price of 1 RBNT in USD

function setPrice(uint256 newPrice) external override onlyAuthorizedUser {

price = newPrice;

lastUpdated = block.timestamp;

emit PriceUpdated(newPrice);

}

}

Status

Unresolved

Hashlock Pty Ltd

34

[H-06] VotingContract - Owner of an active proposal can DoS attack the contract

Description

If a proposal fails to reach the threshold of votes required to be activated before the
voting period ends, the proposal owner can DoS attack the contract by not calling
`cancelProposal`.

Vulnerability Details

There are two functions that call `resetVoting` to clear the current active proposal:

1. `cancelProposal`
2. `banGovenor`

In the case that an active proposal did not get enough votes, `cancelProposal` must be
called to clear the proposal before a new one can take its place. However, the function
can only be called by the owner of the proposal. If the proposal owner does not call
`cancelProposal`, then there’s no way for votes to be reset.

function cancelProposal() public {

require(activeProposal.status, "No proposal is currently active");

require(

activeProposal.owner == msg.sender,

"Not the owner of the proposal"

);

votingEnded = true;

string memory proposalName = activeProposal.name;

resetVoting();

emit ProposalCancelled(proposalName);

}

Impact

The contract will be frozen; no one can start a new proposal.

Recommendation

Create an emergency function for authorised users that calls `resetVoting`.

Status

Resolved

Hashlock
`VotingContract` has been removed from the codebase.

Hashlock Pty Ltd

35

[H-07] NetworkConfiguration#updateReconfigurationContractAddress - Incorrect
access control

Description

The `updateReconfigurationContractAddress` function allows governors to call the
function instead of admins.

Vulnerability Details
There is an `onlyGovernors` modifier on the function instead of `onlyAdmin`.

function updateReconfigurationContractAddress(

address newAddress

) public onlyGovernors {

reconfigurationContractAddress = newAddress;

emit ReconfigurationContractAddressUpdated(newAddress);

}

Impact

Any governor can change the Reconfiguration contract address to any arbitrary
address, allowing `reconfigureNetwork` to be called with arbitrary indexes as opposed to
pseudo-random indexes. This can compromise the node distribution of the RedBelly
network.

Recommendation

Change the modifier to `onlyAdmin`.

Status

Resolved

Hashlock
`updateReconfigurationContractAddress` function has been removed

[H-08] Contracts with ‘authorisable’ access control patterns allow authorised users
to add and remove other authorised users

Description

Authorizable.sol and other contracts that have similar access control patterns
(Reconfiguration.sol, GasFees.sol, Voting.sol) allow its authorised users to add/remove
other authorised users.

Vulnerability Details

The current access control pattern relies on an ‘N of N’ trust model, meaning that all
authorised users have to act as expected for the system to be secure.

Hashlock Pty Ltd

36

Any authorised user that is compromised/malicious can add/remove other authorised
users as they wish, compromising the contract or security of the RedBelly network.

Impact

The security of the contract and the RedBelly network can be compromised.

Recommendation

Separate the role of adding/removing authorised users away from the authorised users
themselves. This can be done in a secure manner by assigning the role to a multisig
address that’s controlled by a committee of authorised users.

Status

Resolved

Redbelly
We are moving away from AuthorisedUser functionality in all the smart contracts and
replacing it with RBAC where only the owner of the smart contract has the RBAC admin
rights to grant/revoke any permissions. So, only the owner will be granting/revoking
access, and for the owner’s wallet, we will most likely use a multi-sig account.

[H-09] Potential Denial of Service (DoS) Attack due to Linear Search in Mappings

Description

The contract uses a mapping to store candidates but performs a linear search to find a
specific candidate in the getCandidateIndex() function. This can lead to inefficient gas
usage, especially as the number of candidates increases.

Vulnerability Details

The getCandidateIndex() function loops over the candidates mapping to find a matching
address, leading to O(n) complexity. This means that as the number of candidates
grows, the gas required for this function will increase proportionally. If there are a lot of
candidates, this function could potentially run out of gas.

Furthermore, the addGovernor() function, which calls getCandidateIndex(), may also
become gas-heavy and potentially run out of gas as the number of candidates
increases. This could be exploited by an attacker adding many candidates, which could
disrupt the operation of the contract.

Impact

This inefficiency could potentially allow an attacker to cause a Denial of Service (DoS)
attack by continuously adding candidates and increasing the gas cost of the
addGovernor() function, disrupting the operation of the contract.

Hashlock Pty Ltd

37

Recommendation

Consider using a different approach that allows for more efficient lookups, such as an
additional mapping that maps an address to its index, to avoid the need for a linear
search. Be sure to update this mapping appropriately when adding or removing
candidates.

Status

Resolved

Hashlock
Search now happens in constant time.

[H-10] Predictable Random Number Generation in banGovernorNode() Function
doublecheck

Description

The banGovernorNode() function uses the generateOne() function to produce a
pseudo-random index for selecting a new governor. This function uses the previous
blockhash and a static seed as sources of randomness, making the outcome predictable
once the block is mined.

Vulnerability Details

The generateOne() function uses the blockhash of the previous block and a static seed
of 0 for a pseudo-random number generator. This makes the outcome predictable as
the blockhash is a deterministic function of the contents of the previous block, and the
seed does not introduce any additional randomness.

Impact

The predictability of this pseudo-random number generation could potentially be
exploited if there's an advantage to knowing the outcome in advance. If the outcome
determines the selection of a new governor, an adversary who can predict this could
use this information to their advantage, leading to a manipulation of the governance
process.

Recommendation

Consider using a more secure and unpredictable mechanism for generating random
numbers. This might involve a commit-reveal scheme, an external randomness provider
like Chainlink VRF, or other similar mechanisms.

Status

Unresolved

Hashlock Pty Ltd

38

[H-11] StakingDeposit#deposit - Existing depositor can lose their pre-existing stake
by calling `deposit` again

Description

`deposit` does not check whether the caller is an existing depositor or not. If an existing
depositor calls `deposit`, their current deposit will be overwritten.

Vulnerability Details

`deposit` assigns a new `Depositors` struct to the caller.

function deposit(

address pubAddr,

address withdrawalAddr,

bool acceptDelegation,

uint256 amount

) external payable {

//.....function body......'

depositors[msg.sender] = Depositors(

pubAddr,

address(0x00),

withdrawalAddr,

false,

acceptDelegation,

Deposit(amount, block.timestamp, 0)

);

...

}

Since there is no check for whether a `Depositors` struct already exists for the caller, all
the pre-existing details about their deposit including their `depositedAmount` and
`confiscatedAmount` will be overwritten.

Impact

The depositor will lose their existing stake.

Recommendation

Add a check that ensures that the caller has not staked already.

require(depositors[msg.sender].deposit.depositTimestamp == 0, "Already

deposited");

Status

Hashlock Pty Ltd

39

Resolved

Hashlock
There is now a check to ensure that an existing staker cannot call `deposit` again.

[H-12] Loss of funds: precision loss in getClaimableTokens function in vesting
contract

Description

The contract performs division before multiplication in the getClaimableTokens()
function which can lead to a loss of precision, especially when _account.allocatedTokens
is not a multiple of totalPeriodOfVesting.

Vulnerability Details

The division (_account.allocatedTokens / totalPeriodOfVesting) is integer division, and if
allocatedTokens is not a multiple of totalPeriodOfVesting, the division will lose precision
as it rounds down to the nearest integer. This could lead to a lower tokensToClaim than
expected.

Impact

This precision loss could result in users being able to claim fewer tokens than they are
supposed to be able to, potentially leading to loss of funds.

Recommendation

Consider performing the multiplication operation before the division to minimise
precision loss. The recommended code would look like this:

uint tokensToClaim = (currentTimestamp - _account.lastClaimedTimeStamp) *
_account.allocatedTokens / totalPeriodOfVesting;

Additional Note:

While the recommended change minimises precision loss, it introduces a potential
integer overflow issue if the product of (currentTimestamp -
_account.lastClaimedTimeStamp) and _account.allocatedTokens exceeds the maximum
value that can be stored in a uint. This risk can be mitigated by using the SafeMath
library provided by OpenZeppelin, which includes safety checks to prevent overflow.

Status

Unresolved

Hashlock Pty Ltd

40

[H-13] StakingDeposit#deposit - Malicious users can prevent other users
from staking by depositing a zero amount on their behalf

Description

A malicious user can grief/cause DoS to other users by depositing a zero amount on
their behalf. This is because the function deposit does not check if the amount is zero.

Vulnerability Details

The function deposit does not have access control. This means that another user can
deposit on behalf of other users. However, the function does not check if the amount is
zero. This means that a malicious user can deposit a zero amount on behalf of another
user, preventing the other user from staking.

/**
* @dev - main deposit function - can be called any entity - no validation for

msg.sender
*/
function deposit(address depositor) external payable {

require(
depositors[depositor].depositTimestamp == 0,
"Existing deposit found"

);
depositors[depositor] = Deposit(msg.value, block.timestamp, 0);
emit StakeDeposited(depositor, msg.value);

}

Impact

A malicious user can prevent other users from staking by depositing a zero amount on
their behalf. Since there is no way of removing Deposit entries, the malicious user can
prevent the other user from staking forever.

Recommendation

Add a require statement to check if the amount is zero.

/**
* @dev - main deposit function - can be called any entity - no validation for

msg.sender
*/
function deposit(address depositor) external payable {

require(
depositors[depositor].depositTimestamp == 0,
"Existing deposit found"

);
require(msg.value > 0, "Amount cannot be zero");
depositors[depositor] = Deposit(msg.value, block.timestamp, 0);
emit StakeDeposited(depositor, msg.value);

}

Adding access control to the function deposit such that only the NetworkConfiguration

contract can call the function is also recommended.

Hashlock Pty Ltd

41

Status

Unresolved

Hashlock
An attacker can cause a DoS on `NetworkConfiguration.register` by frontrunning the
transaction with a zero deposit on behalf of `nodeAdress`.

Medium

[M-01] Using transfer in claimtokens function in vesting contract

Description

The claimTokens() function uses the transfer() method to send tokens to an address.
While transfer() was previously recommended for sending Ether due to its automatic
reentrancy protection, it is now considered less safe due to its gas limit of 2300 gas
which can cause unexpected behaviour.

Vulnerability Details

The transfer() function in Solidity is considered less safe because it can cause contracts
to break if they require more than 2300 gas.

Impact

If the receiving contract's fallback function consumes more than 2300 gas, the
transfer() function will fail, potentially causing the claimTokens() function to behave
unexpectedly.

Recommendation

Consider replacing transfer() with the call.

Status

Unresolved

[M-02] Contracts with `authorised` access control are frozen if no users are
authorised during deployment

Description

Contracts that initialise an array of authorised users at deployment can be frozen if the
`authorizedUsers` list is empty.

Vulnerability Details

Hashlock Pty Ltd

42

The `Authorizable.sol` contract has the function `authorizeUser` which can only be called
by an existing authorised user.

/// @notice Authorizes a user

/// @dev Adds a user to the list of authorized users

/// @param _userAddress Address of the user who'll be authorized

function authorizeUser(address _userAddress) external override

onlyAuthorizedUser {

isAuthorizedUser[_userAddress] = true;

emit UserAuthorized(_userAddress);

}

If there are no authorised users at deployment, then it’s impossible to add them
afterwards.

Impact

Any functions that can only be called by authorised users will never be able to be called,
potentially bricking the contract after deployment.

Recommendation

Include the address of the contract deployer as an authorised user by default in the
constructor.

/// @notice Allows to check whether an address is authorized

mapping(address => bool) public isAuthorizedUser;

constructor(address[] memory authorizedUsers) {

isAuthorizedUser[msg.sender] = true;

for (uint i = 0; i < authorizedUsers.length; i++) {

isAuthorizedUser[authorizedUsers[i]] = true;

}

}

If the contract deployer is another contract, make sure it can call `authorizeUser`.

Status

Resolved

Redbelly
We are moving away from AuthorisedUser functionality in all the smart contracts and
replacing it with RBAC where the owner of the smart contract has the RBAC admin

Hashlock Pty Ltd

43

rights to grant/revoke any permissions. So, even if no users are authorized during
deployment the owner can easily grant access later in the life cycle.

[M-03] VotingContract - Voters can vote before a proposal is added

Description

Voters can vote before a proposal is added if the proposal hasn't been added before
`startTime + votingDelay`.

Vulnerability Details

Voters can start voting after `startTime + votingDelay`, regardless of whether there is an
active proposal or not.

function voteYes() public onlyEligibleVoters {

require(

block.timestamp >= (startTime + votingDelay),

"Voting has not started yet"

);

require(

block.timestamp < (startTime + votingPeriod + votingDelay),

"Voting period has ended"

);

require(!hasVoted[msg.sender], "You have already voted");

activeProposal.yesVotes++;

hasVoted[msg.sender] = true;

voters.push(msg.sender);

emit VoteCasted("Yes");

}

If there is no active proposal before `startTime + votingDelay` then, a voter would waste
their vote as it’ll get cleared from the vote count when a new proposal is added, but
their `hasVoted` status remains true.

Impact

The voter will not be able to vote for the upcoming proposal.

Recommendation

Inside the vote functions, check that there is an active proposal with the following line:

require(activeProposal.status, "No active proposal");

Status

Hashlock Pty Ltd

44

Resolved

Hashlock
Contract has been removed.

[M-04] VotingContract - Governors can grief the proposal result by
adding/removing governors

Description

Governors can grief the result of a proposal by adding/removing governors to change
the networkSize, which is used to determine whether the proposal passes or not.

Vulnerability Details

A proposal can only be implemented by calling `banGovenor` if the following function
returns true:

function isThresholdReached() private view returns (bool) {

uint256 networkSize = networkConfigurationContract.getNetworkSize();

if (activeProposal.yesVotes > (networkSize - 1) / 3) {

return true;

}

return false;

}

Governors can change the network size by adding or removing other governors from
the network by calling `addGovernor`/`removeGovernor` after voting has ended,
changing the result of the vote.

Impact

A proposal that wouldn't have passed now can pass, and vice versa.

Recommendation

Pause functions that change the network configuration (`addGovernor`,
`removeGovernor` inside NetworkConfigurationContract) while there is an active
proposal being voted on.

Status

Resolved

Hashlock
Contract has been removed.

Hashlock Pty Ltd

45

[M-05] TokenVestingUpgradeable - A zero vesting period will make the vested
tokens unclaimable

Description

When tokens are allocated, it’s possible to set a vesting period of 0. This results in the
`getClaimableTokens` reverting due to a zero-division.

Vulnerability Details

`allocateTokens` allows vesting to occur where `_vestingStartTime == _vestingEndTime`.

require(

_address != address(0) &&

_vestingStartTime <= _vestingEndTime &&

_amount > 0

);

This results in a `totalPeriodOfVesting = 0` inside `getClaimableTokens`, which is used as
a divisor to calculate the amount of tokens to claim.

function getClaimableTokens(address _address) public view returns (uint) {

AccountDetails memory _account = accountsList[_address];

uint totalPeriodOfVesting = _account.vestingEndTime -

_account.vestingStartTime;

uint currentTimestamp = block.timestamp;

if (block.timestamp > _account.vestingEndTime) {

currentTimestamp = _account.vestingEndTime;

}

uint tokensToClaim = (currentTimestamp -

_account.lastClaimedTimeStamp) *

(_account.allocatedTokens / totalPeriodOfVesting);

return tokensToClaim;

}

`getClaimableTokens` will revert due to a ‘division by zero’. Since the function is called
inside `claimTokens`, the entities would not be able to claim their vested tokens.

Impact

Entities with vested tokens with a vested period of 0 will not be able to claim their
tokens.

Recommendation

Change the require statement inside `allocateTokens` to not allow zero vesting periods
by disallowing the case where `_vestingStartTime == vestingEndTime`.

Hashlock Pty Ltd

46

require(

_address != address(0) &&

_vestingStartTime < _vestingEndTime &&

_amount > 0

);

Status

Unresolved

[M-06] TokenVestingUpgradeable - Contract can run out of tokens to vest

Description

Users can call `allocateTokens` with any arbitrary `_amount`. This can lead to cases
where vested tokens are unclaimable since the contract does not have enough tokens to
transfer.

Vulnerability Details

When an entity tries to claim their tokens, the transaction will fail as the contract has
sufficient funds to transfer.

Impact

Entities will not be able to claim their tokens if there aren’t enough tokens in the
contract.

Recommendation

Add a check to ensure that there are sufficient ‘free’ tokens left to be allocated inside
`allocateTokens`. This can be done by keeping track of the total amount of allocated
tokens.

require(_totalAllocatedTokens + _amount <= address(this).balance, "Not enough

tokens in contract");

Status

Unresolved

Hashlock Pty Ltd

47

Low

[L-01] Reconfiguration - Address without authorized access can still forcibly send
Ether to the contract

Description

Impact

"`Reconfiguration` contract can still receive Ether when another contract calls
`selfdestruct`. This does not use the `receive` function and therefore, the
`onlyAuthorizedAccess` modifier is bypassed

NOTE: The SELFDESTRUCT opcode is being deprecated in Ethereum. As of July 2023, it
still functions as normal and results in the unintended behaviour described above."

Recommendation

Status

Resolved

The RBN team has stated the following:

"[The contract] receives ethers/native assets because it was planned that the user who
initiates the Reconfiguration transaction should be compensated for it and paid some
reward for initiating it. But this requirement has changed since. The native coin
receiving functionality has been removed or needs to be removed.”

[L-02] Make sure vesting endtime is greater than block.timestamp in allocate
tokens

Description

Impact

Recommendation

Status

Unresolved

[L-03] Default values being reinitialized

Hashlock Pty Ltd

48

Description

Vulnerability Details

Impact

Recommendation

Status

Unresolved

[L-04] Missing sanity checks in admin setter functions

Description

Various admin functions that update state variables do not have sufficient input
validation.

Vulnerability Details

In GasFees.sol, `updateCurrency` does not check for an empty input string.

In Voting.sol, `updateVotingPeriod` and `updateVotingDelay` do not check for zero input
values.

In NetworkConfiguration.sol, `updateReconfigurationContractAddress` and
`updateVotingContractAddress` do not check if the input address is a contract.

Impact

Without sanity checks, unintended state transitions can occur, resulting in unintended
behaviour.

Recommendation

GasFees#updateCurrency
require(bytes(_currency).length > 0, "Currency can't be empty");

VotingContract#updateVotingPeriod
require(_newTimePeriod > 0, "Voting period cannot be 0");

VotingContract#updateVotingDelay
require(_newTimePeriod > 0, "Voting delay cannot be 0");

NetworkConfigurationContract#updateReconfigurationContractAddress &
NetworkConfigurationContract#updateVotingContractAddress

require(newAddress.code.length > 0, "Address must be a contract");

Hashlock Pty Ltd

49

Status

Unresolved

[L-05] Pragma version old

Description

Impact

Recommendation

Status

Unresolved

[L-06] VotingContract - `addProposal` does not check if `nodeAddress` is an
existing governor

Description

A governor can create a proposal with a `nodeAddress` that does not belong to an
existing governor. This can lead to unintended behaviour if the vote passes.

Vulnerability Details

A successful proposal is executed by calling `banGovenor` which calls
`NetworkConfigurationContract.banGovernorNode`

function banGovernorNode(address nodeAddress) public OnlyVotingContract {

blockedGovernors.push(nodeAddress);

uint256 candidateIndex = getRandomIndex(0, candidateCount.current());

int256 governorIndex = isGovernor(nodeAddress);

votingContract.updateEligibleVoter(

candidates[candidateIndex],

governors[uint256(governorIndex)]

);

governors[uint256(governorIndex)] = candidates[candidateIndex];

candidates[uint256(candidateIndex)] = candidates[

candidateCount.current() - 1

];

candidateCount.decrement();

address[] memory governorAddress = getGovernors();

emit GovernorsUpdated(governorAddress);

}

Hashlock Pty Ltd

50

`isGovernor(nodeAddress)` returns `-1`, since the governor does not exist. The random
candidate gets added as an eligible voter, but does not become a governor, since they
get assigned to the index `uint256(-1) = type(uint256).max` which is greater than the
`governorsCount`.

Impact

If there is no governor in the max uint256 index value, then the randomly chosen
candidate becomes a new voter and no one is removed from voting.

If there is a governor in the max uint256 index value due to a previous successful
proposal with a non-existing governor `nodeAddress`, then that address is removed from
voting and replaced with the candidate.

The list of governors does not change.

Recommendation

Add a check that requires the `nodeAddress` when creating a new proposal to be an
existing governor

require(networkConfigurationAddress.isGovernor(nodeAddress) > 0, "Address is

not a governor");

Status

Unresolved

[L-07] VotingContract#banGovenor - Function name has a typo

Description

`banGovenor` should be `banGovernor`

Vulnerability Details

N/A

Impact

N/A

Recommendation

Replace all mentions of `banGovenor` with `banGovernor`

Status

Unresolved

Hashlock Pty Ltd

51

[L-08] Contracts should inherit from Authorizable instead of having its own access
control logic

Description

The following contracts use an authorizable access control pattern but do not inherit
from `Authorizable`.

1. GasFees
2. VotingContract
3. ReconfigurationContract

Vulnerability Details

N/A

Impact

N/A

Recommendation

The contracts listed above should inherit from `Authorizable` to improve the
maintainability of the codebase.

Status

Unresolved

[L-09] Do not use floating pragma versions

Description

It is best practice to deploy all contracts with the same compiler version. Using a
floating pragma version may not allow this to happen.

Vulnerability Details

Refer to SWC-103 for more information.

Impact

Using different compiler versions may introduce bugs or intended behaviours.

Recommendation

Lock the pragma version (remove `^` from the Solidity version number)

Hashlock Pty Ltd

https://swcregistry.io/docs/SWC-103

52

Status

Unresolved

[L-10] JailedGovernors - Initialising slash percentage to be >100% will cause the
`jail` method to always revert

Description

An arbitrary slash percentage can be set in the constructor and in `setSlashPrcnt`. If the
value of `slashPrcnt` is greater than 100% (`slashPrcnt = 100`), the `JailedGovernors`
contract will not be able to confiscate stake from governors.

Vulnerability Details

Inside `StakingDeposit.confiscateStake`, the slash percentage value is used to calculate
the amount of stake to confiscate from the governor.

function confiscateStake(address _depositor, uint8 _amountPrcnt) external {

...

uint confiscationAmount = (depositors[_depositor]

.deposit

.depositedAmount * (_amountPrcnt)) / 100;

depositors[_depositor].deposit.confiscatedAmount = confiscationAmount;

depositors[_depositor].deposit.depositedAmount =

depositors[_depositor].deposit.depositedAmount -

confiscationAmount;

payable(msg.sender).transfer(confiscationAmount);

}

A slash percentage of over 100% will cause `confiscationAmount > depositedAmount`,
which will cause the line below to revert due to underflow.

depositors[_depositor].deposit.depositedAmount =

depositors[_depositor].deposit.depositedAmount -

confiscationAmount;

Impact

The `JailedGovernors` contract will not be able to jail governors by calling `jail`.

Recommendation

Add input validation that only allows `slashPrcnt` to be set to values less than or equal
to 100%.

require(_slashprcnt <= 100, "Invalid slash percentage");

Hashlock Pty Ltd

53

Status

Unresolved

[L-11] ActivityMonitor - `updateJailOwner` function is unnecessary

Description

The `updateJailOwner` function sets the owner of the `JailedGovernors` contract. This is
unnecessary as the owner should always be the `ActivityMonitor` contract.

Vulnerability Details

N/A

Impact

N/A

Recommendation

Remove the `updateJailOwner` function.

Status

Unresolved

Gas
[G-01] Use `uint256` instead of `bool` for mappings

Description

The SEVM stack works in 32-byte words. There's overhead costs with casting 256-bit
numbers into 8-bit for `bool` variables. For boolean values that are regularly accessed, it
is better to store them as `uint256` values to avoid the unnecessary overhead gas costs.

Recommendation

Use mappings that map to uint256 values instead of bool for mappings that are
regularly accessed such as `Authorizable.isAuthorizedUser`.

Status

Unresolved

[G-02] Use `++i` instead of `i++`

Hashlock Pty Ltd

54

Description

Pre-incrementing a value saves gas, as the SEVM does not need to return the
non-incremented value.

Recommendation

For cases where the pre-incremented value is not needed for assignment to another
variable, such as when through a for-loop, use `++i` instead of `i++`.

Status

Unresolved

[G-03] Use `unchecked` math for non-overflowing operations

Description

For Solidity pragma versions 0.8.0 and above, it is possible to add code inside an
`unchecked` block to bypass overflow/underflow checks. These checks aren’t necessary
for operations that are guaranteed to not overflow/underflow, such as incrementing
inside a for-loop.

Recommendation

Use unchecked blocks when incrementing the loop counter.

An example of a for-loop with an unchecked loop counter is below.

for (uint256 i; i < arrayLength;) {

// do something

unchecked {

++i;

}

}

Status

Unresolved

[G-04] RBAC - Use `constant` state variables for role types

Description

Hashlock Pty Ltd

55

The `RBAC` abstract upgradeable contract initialises the hash digest of the roles in the
`initialize` function and stores them in state variables. This costs more gas to access and
store.

Recommendation

Declare the role state variables as `public constant` hash digests. This works with
upgradeable contracts since `constant` state variables are stored inside the contract
bytecode instead of storage.

Status

Unresolved

[G-05] Cache array length before iterating over it

Description

The length of an array is accessed directly before each iteration.

for (uint256 i = 0; i < addresses.length; i++) {

nodeConfigs[i] = nodeAddressToConfigMap[addresses[i]];

}

There are many instances in the codebase of this occurring.

Recommendation

If the length of an array does not change while iterating over it, gas can be saved by
caching the array length value to memory and accessing the value from memory.

uint256 addressesLength = addresses.length;

for (uint256 i = 0; i < addressesLength; i++) {

nodeConfigs[i] = nodeAddressToConfigMap[addresses[i]];

}

Status

Unresolved

[G-06] Result of math operations can be cached into memory if reused

Description

Inside Reconfiguration#getRandomIndexes, the value `(networkSize - 1) /
toleranceFactor` is calculated multiple times.

Hashlock Pty Ltd

56

if (candidates.length >= (networkSize - 1) / toleranceFactor) {

randomGovernorIndexes = PseudoRandomNumberGenerator

.generateMultiple(

0,

networkSize,

(networkSize - 1) / toleranceFactor,

seed

);

randomCandidateIndexes = PseudoRandomNumberGenerator

.generateMultiple(

0,

candidates.length,

(networkSize - 1) / toleranceFactor,

seed

);

} else if (candidates.length < (networkSize - 1) / toleranceFactor) {

randomGovernorIndexes = PseudoRandomNumberGenerator

.generateMultiple(0, networkSize, candidates.length, seed);

randomCandidateIndexes = PseudoRandomNumberGenerator

.generateMultiple(

0,

candidates.length,

candidates.length,

seed

);

}

Recommendation

Cache the result of `(networkSize - 1) / toleranceFactor` into memory and use the
cached value to save gas on math operations.

Status

Unresolved

[G-07] VotingContract - Use a `mapping` for `authorisedUsers` instead of array

Description

Hashlock Pty Ltd

57

Authorised users are stored in an array, which is iterated over to determine if a
particular address is a user. Iterating over an array can get very costly if the array is
large.

Recommendation

Use a mapping to store authorised user addresses.

Status

Unresolved

[G-08] VotingContract - `networkConfigurationAddress` state variable is redundant

Description

The address of the NetworkConfiguration contract and its interface are both stored
inside state variables, taking up 2 storage slots.

Recommendation

Store the NetworkConfigurationInterface instance and when the address is required,
cast to an address.

Status

Unresolved

[G-09] VotingContract - Assign `_authorisedUsers` array to `authorisedUsers`
instead of iterating over array values

Description

Related to [G-07]

Inside the constructor, the `_authorisedUsers` array is iterated over and its elements are
pushed to the `authorisedUsers` array individually.

for (uint256 i = 0; i < _authorisedUsers.length; i++) {

authorisedUsers.push(_authorisedUsers[i]);

}

Recommendation

Assign the `_authorisedUsers` array to `authorisedUsers` to save gas on iterating
through the array and pushing values individually.

authorisedUsers = _authorisedUsers;

Hashlock Pty Ltd

58

Status

Unresolved

[G-10] VotingContract - Redundant updates to `votingEnded`

Description

Assigning `votingEnded = true` inside `cancelProposal` and `banGovenor` is not required,
as both functions call `resetVoting` which resets the value back to false.

Furthermore, `banGovenor` can only be called if `votingEnded = true` due to the
`proposalActivated modifier`

modifier proposalActivated() {

require(

isThresholdReached() && votingEnded,

"Proposal did not get enough yes votes"

);

_;

}

...

function banGovenor() public proposalActivated onlyAuthorisedUser {

networkConfigurationContract.banGovernorNode(

activeProposal.nodeAddress

);

votingEnded = true;

resetVoting();

emit VotingEnded("Voting has ended for the proposal");

}

function resetVoting() private {

require(votingEnded, "Voting has not ended yet");

activeProposal = Proposal(

"",

address(0),

0,

0,

0,

"",

Hashlock Pty Ltd

59

address(0),

false

);

votingEnded = false;

for (uint256 i = 0; i < voters.length; i++) {

delete hasVoted[voters[i]];

}

delete voters;

}

Recommendation

Remove the `votingEnded` check inside `resetVoting` and the `votingEnded = true`
assignments inside `banGovenor` and `cancelProposal`.

Status

Unresolved

[G-11] VotingContract#resetVoting - Delete `activeProposal` instead of reassigning
it to an empty Proposal object

Description

To reset the active proposal, unnecessary stack operations are performed to create a
`Proposal` struct with default values.

activeProposal = Proposal(

"",

address(0),

0,

0,

0,

"",

address(0),

false

);

Recommendation

Save gas on unnecessary stack operations by using `delete activeProposal` to reset the
state variable back to its default values.

delete activeProposal;

Hashlock Pty Ltd

60

Status

Unresolved

[G-12] ActivityMonitor - Unnecessary state variables

Description
`slashPrcnt` and `daysToServInJail` are state variables that are initialised during
deployment. However, they do not have any relation with `JailedGovernors.slashPrcnt`
and `JailedGovernors.daysToServe`.

`inactivityThreshold` and `windowSize` state variables are not used inside the contract.

Recommendation

Remove the state variables stated above from the contract.

Status

Unresolved

Hashlock Pty Ltd

61

Additional Contracts Smart Contract
Audit Findings

High
[H-01] BusinessIdentifier - Authorised representatives can add and remove
other authorised representatives

Description

The contract BusinessIdentifier allows authorised representatives to add and remove
other authorised representatives. This may be a security risk as the authorised
representatives may be able to add and remove other authorised representatives
without the business owner's consent.

Vulnerability

The current access control pattern relies on an ‘N of N’ trust model, meaning that all
authorised representatives have to act as expected for the contract to function as
intended.

Any authorised representative that is compromised/malicious can add/remove other
authorised representatives as they wish, compromising the security of the contract.

Recommendation

Change the access control such that only the admin can add and remove authorised
representatives.

Status

Acknowledged

Redbelly

This is a business decision. We have decided to let this be the same.

[H-02] ReleaseAgreement#updateRetriever - Retriever can be changed at
any time, even after the release has been approved and made effective

Description

The function updateRetriever can be called at any time, even when
userRecoveryDetails.release = true.

Hashlock Pty Ltd

62

Impact

A malicious approver can frontrun the legitimate retriever in calling updateRelease by
calling updateRetriever then updateRelease to lock in a different retriever.

Recommendation

Add a require statement to check if userRecoveryDetails.release is false.

require(
!userRecoveryDetails.release,
"Release has already been approved"

);

Status

Resolved

Redbelly

We have added the check that if once the retriever is set by any one of the guardians,
we won't allow it to be set again. Also another check has been applied that this will be
allowed only if release is not true.

[H-03] ReleaseAgreementFactory#create - User can circumvent guardian
permission checks by providing a user address as a guardian

Description

The same permission check is used for both guardians and users. This means that a
user can circumvent the guardian permission check by providing a user address as a
guardian.

Vulnerability Details

The following lines perform the checks for users and the guardian:

bool permissionCheckUser = RAFlibrary.checkPermissionOfAddress(
permissionContractAddress, "credentialSubject.publicAddress",

_backupCredentials
);
require(permissionCheckUser, "User do not have write permission");
bool permissionCheckGuardian = RAFlibrary.checkPermissionOfAddress(

permissionContractAddress, "credentialSubject.guardianAddress",
_backupCredentials

);
require(permissionCheckGuardian, "Guardian do not have write permission");

This accesses the isAuthorizedUser mapping to check if the user is authorised. However,
the same mapping is used to check if the guardian is authorised.

function checkPermissionOfAddress(

Hashlock Pty Ltd

63

address _permissionContractAddress,
string memory path,
string[] memory _backupCredentials

) external returns (bool) {
bool permissionCheck = true;
Permission permission = Permission(_permissionContractAddress);
for (uint256 i = 0; i < _backupCredentials.length; i++) {

if (
!(

permission.isAllowed(
StringToAddress.stringToAddress(JsonParserAndVerify.parseJson(path,
_backupCredentials[i]))

)
)

) {
permissionCheck = false;
break;

}
}
return permissionCheck;

}

Hence, providing a user address as a guardian will pass the permission check, as a user
and guardian are both checked against the same mapping.

The steps to create an unauthorised release agreement are as follows:

1. As an approved user who is authorised in the Permission contract, create backup
credentials with arbitrary data, making sure that the
credentialSubject.guardianAddress is your address.

2. Generate proof of the backup credentials using your private key.

3. With the proof and backup credentials, you can create a release agreement with
any user as the guardian. You will pass the signature check, since the proof
matches with your public key.

Impact

A user can create an unauthorised release agreement with any list of approvers who are
authorised in the Permission contract.

Recommendation

Add a separate mapping for guardians and users inside the Permission contract.

Status

Pending further review

Redbelly

We have added a check that the person who is trying to deploy the RA contract has not
already deployed any contract before. We also have made the RA contract not
upgradable so the user can make no changes to that. We also have added a check that

Hashlock Pty Ltd

64

the guardians are both different. As we have decided to not have a GuardianRegistry, so
these are the steps taken instead.

Hashlock

Checking for unique guardians, though recommended, still does not prevent this issue.
The issue arises due to both user and guardian permission checks being functionally
identical and interchangeable, which means that any allowed user can be a
guardian/approver. Please refer back to the recommended fix in the report.

[H-04] ReleaseAgreementFactory#create - Function is vulnerable to replay
attacks

Description

The ReleaseAgreementFactory does not make use of nonces to prevent replay attacks. This
means that an attacker can replay a previous valid transaction to create the same
release agreement multiple times.

Vulnerability Details

The create function uses RAFlibrary.verifyBackupCredential which uses
JsonParserAndVerify.verifyED25519 to verify that the backup credentials provided are
signed by the guardians with cryptographic signatures. However, no nonce is used and
checked in the credentials payload, meaning that it is possible for a replay attack to
occur.

Impact

A malicious user can create another identical release agreement contract, with the
caveat that they’re now the owner of the upgradeable contract. This allows them to
perform the following attack:

1. Create an identical release agreement contract by replaying a past transaction,
except now the owner of the contract is the malicious user.

2. Upgrade the logic contract to include a setter function that allows the owner of
the contract to set userRecoveryDetails.release to true and
userRecoveryDetails.retriever to the owner, without the need for approver
checks.

3. Proceed with key recovery and obtain the key shards.

Recommendation

Include a nonce in the backup credentials payload, and track and check this nonce value
inside ReleaseAgreementFactory.

Status

Resolved

Redbelly

Hashlock Pty Ltd

65

We have added a condition to check that if a person's mapping is already present in
RAF, i.e. if they have already deployed a RA contract so the contract won't allow them
to deploy again. Hence no re-entrancy.

Hashlock

The proposed change does not address the issue, which is a replay attack (not
reentrancy). However, the addition of a `verifyUser` check fixes the issue.

Medium
[M-01] ReleaseAgreement#updateIsValid - Missing access control allows any
user to update the validity of the release agreement

Description

The function updateIsValid is missing access control and allows any user to update the
validity of the release agreement.

Impact

Any user can update the validity of the release agreement.

Recommendation

Add access control to the function updateIsValid. We recommend limiting access to the
admin as opposed to approved users.

Status

Resolved

Redbelly

`isValid` field has been removed.

[M-02] ReleaseAgreement#updateApproversChecks - Approved users can
grief the release agreement by delaying the release process

Description

When the minimum approval threshold is reached and the retriever is waiting for the
cooldown time to pass to initiate the release, any approved user can call the function
updateApproversChecks to reset the cooldown time, delaying the release.

Vulnerability Details

Impact

Hashlock Pty Ltd

66

The release can be delayed for many days or weeks, depending on the number of
approvals after the threshold has already been reached.

Recommendation

Allow approvers to update their approval status only if the minimum approval threshold
has not been reached.

function updateApproversChecks() public onlyApprovers {
require(

userRecoveryDetails.approversChecks.length <
userRecoveryDetails.minApprover,

"Minimum approval threshold reached"
);
...

}

Status

Resolved

Redbelly

We have added the check that if minimum approvers have already been approved, then
there is no need to change the timestamp again.

Low
[L-01] BootstrapContractRegistry#getContractAddress - Function should
validate against the zero address

Description

The function getContractAddress gets the address of a contract by its name. However, if
the contractName is not inside the registry, it'll return the zero address.

Impact

An external function that calls getContractAddress and doesn't validate the returned
address against the zero address can be vulnerable to a DoS attack.

Recommendation

Add a require statement to validate the to-be-returned address against the zero
address.

function getContractAddress(string memory contractName) public view returns
(address) {

address _contractAddress = registry[contractName];
require(_contractAddress != address(0), "Contract address not found");
return _contractAddress;

}

Hashlock Pty Ltd

67

Status

Unresolved

[L-02] BootstrapContractRegistry - Do not hard-code addresses

Description

The contract BootstrapContractRegistry hard-codes the addresses of the contracts inside
the registry. This is not a good practice because the stored addresses of the contracts
may be incorrect.

Impact

The registry may return incorrect contract addresses.

Recommendation

Allow the constructor of the contract to take in another two arrays:

1. An array of contract names

2. An array of contract addresses

The constructor will then store the contract names and addresses into the registry.

This way, the registry deployer can initialise the registry with the correct contract
names and addresses.

Status

Unresolved

[L-03] BusinessIdentifier#onlyAuthorisedDelegte - Typo in modifier name

Description

The onlyAuthorisedDelegte function is spelt incorrectly.

Recommendation

Correct the spelling to onlyAuthorisedDelegate.

Status

Unresolved

Hashlock Pty Ltd

68

[L-04] BusinessIdentifierFactory#changeBusinessPublicAddres - Typo in
function name

Description

The changeBusinessPublicAddres function is spelt incorrectly.

Recommendation

Correct the spelling to changeBusinessPublicAddress.

Status

Unresolved

[L-05] BusinessIdentifierFactory#deployContract - BusinessIdentifier logic
contract should be initialised after deployed

Description

It is best practice to initialise the logic contract after it has been deployed. This is
because the logic contract in some cases can have logic that changes the behaviour of
the contract after it has been deployed.

Recommendation

Initialise the logic contract after it has been deployed.

function deployContract(
address _businessPublicAddress,
string memory _companyName,
string memory _incorporatedName,
string memory _identifierType,
string memory _identifier,
string memory _businessAddress,
bool _isBeneficialOwner

) external onlyOwner {
...
address _businessIdentifier = address(new BusinessIdentifier());

ERC1967Proxy proxy = new ERC1967Proxy(
address(_businessIdentifier),
initData

);

BusinessIdentifier(_businessIdentifier).initialize(
msg.sender,
_companyName,
_incorporatedName,
_identifierType,
_identifier,
_businessAddress,
_isBeneficialOwner

Hashlock Pty Ltd

69

);
...

}

Status

Unresolved

[L-06] Only use one version of Solidity

Description

ReleaseAgreement and ReleaseAgreementFactory have the following pragma lines

pragma solidity >=0.8.2 <0.9.0;

It is best practice to set the pragma to one version of Solidity to prevent any
unexpected behaviour that would result from contracts being compiled with different
compiler versions.

Recommendation

Use one pragma version for the entire project. We recommend a more up-to-date
version such as v0.8.19.

Status

Unresolved

[L-07] JsonParserAndVerify - Use staticcall instead of call for non-state
changing calls

Description

The contract JsonParserAndVerify uses call for non-state changing calls to pre-compiles.
For safety reasons, it is best practice to use staticcall instead.

Recommendation

Replace call with staticcall for non-state changing calls to pre-compiles.

Status

Unresolved

Hashlock Pty Ltd

70

Gas
[G-01] IDPRegistry - Contract should store IDP Proofs in arrays instead of a
mapping to save gas

Description

The contract IDPRegistry stores IDP proofs in nested mappings. This provides no benefit
over an array as the proof count is still stored in another mapping and is still retrieved
by iterating through the mapping as if it were an array.

Recommendation

For simplicity, the contract should store IDP proofs in arrays. This will actually save gas
as the contract will not have to store the proof and proof count in two mappings.

mapping(uint256 => Proof[]) private idpProofs;

Status

Unresolved

[G-02] BusinessIdentifier - Switch order of checks in require statements to
save gas

Description

The access control modifiers check for the default admin role and then the appropriate
authorised roles. This is not gas efficient in most cases where the functions will be
called by the authorised roles as opposed to the admin.

Recommendation

Swap the order of the checks inside the require statements such that it checks for the
admin role last.

modifier onlyAuthorisedRepresentative() {
require(

hasRole(DEFAULT_ADMIN_ROLE, _msgSender()) ||
hasRole(AUTHORISED_REPRESENTATIVE_ROLE, _msgSender()),

"Caller must have IDP or Authorised Representative"
);
_

}

becomes

Hashlock Pty Ltd

71

modifier onlyAuthorisedRepresentative() {
require(

hasRole(AUTHORISED_REPRESENTATIVE_ROLE, _msgSender()) ||
hasRole(DEFAULT_ADMIN_ROLE, _msgSender()),

"Caller must have IDP or Authorised Representative"
);
_

}

Status

Unresolved

[G-03] BusinessIdentifierFactory#changeBusinessPublicAddres - Redundant
check for invalid business address

Description

The changeBusinessPublicAddres function checks if the input _contractAddressmatches
with the current business address. This is redundant as the function can just access the
current business address directly to store it in the new public address key-value pair.

Recommendation

Cache the current business address directly from the mapping and store it in the new
public address key-value pair.

function changeBusinessPublicAddres(
address _oldAddress,
address _newAddress,

) external onlyOwner {
address _contractAddress = businessContracts[_oldAddress];

delete businessContracts[_oldAddress];
businessContracts[_newAddress] = _contractAddress;

emit BusinessPublicAddressUpdated(
_oldAddress,
_newAddress,
_contractAddress

);
}

Status

Unresolved

Hashlock Pty Ltd

72

[G-04] BusinessIdentifier and ReleaseAgreement details for every business
or release agreement can be stored inside the same contract

Description

Business identifiers and release agreements are deployed using factory contracts. The
data of every business or release agreement are stored in each contract which needs to
be deployed separately. This is very gas inefficient.

Recommendation

Instead of having one contract per business or release agreement and factory contracts
to deploy them, the data for every business or release agreement can be stored inside
the same contract using a mapping to access the data for each business or release
agreement.

This will simplify the codebase and reduce the gas costs of deploying and interacting
with the contracts.

Status

Unresolved

[G-05] JsonParserAndVerify#verifyED25519 - Redundant check on callresult

Description

The function verifyED25519 has a require statement to check that callresult is true.
However, this has already been checked by the assembly code.

// Check the result of the call
switch callresult
case 0 {

invalid()
}

Recommendation

Remove the following require statement:

require(callresult, "fail-hash");

Status

Unresolved

Hashlock Pty Ltd

73

[G-06] JsonParserAndVerify#verifyED25519 - Use revert instead of invalid

Description

The function verifyED25519 uses the invalid Yul function to stop execution if the result of
the precompile call is false. This is wasteful as the invalid function does not refund the
remaining gas to the transaction originator.

Recommendation

Use revert instead of invalid.

Status

Unresolved

[G-07] JailedGovernors#jail - External call to
TombstonedGovernors.tombstoneThreshold uses more gas

Description

The tombstone threshold variable used to determine whether a governor is eligible for
being tombstoned is stored in the TombstonedGovernors contract as a state variable
when it's only referenced by JailedGovernors. It makes more sense to store it in
JailedGovernors instead, so that the external call to
TombstonedGovernors.tombstoneThreshold can be avoided.

Recommendation

Move the tombstoneThreshold variable from TombstonedGovernors to JailedGovernors.

Status

Unresolved

Hashlock Pty Ltd

74

Final Audit Round Findings

High

[H-01] PriceFeedContract#getLatestPrice - Function should not return price if stale

Description

The `getLatestPrice` function returns the latest price as well as the timestamp of when
the price was last updated. However, this is insufficient as external contracts may
accidentally use the stale price.

Vulnerability Details

Currently, `getLatestPrice` returns `(price, lastUpdated)`. It is up to contracts that rely on
the price feed to implement staleness checks. In this case, staleness is subjective to
external contracts and the threshold that they decide on. This can lead to integration
issues if there are interoperable contracts that rely on the same price feed, but
implement different staleness checks. `PriceFeedContract` should determine the
threshold for price staleness.

Impact

External contracts may not implement staleness checks, or implement them incorrectly,
potentially leading to loss of funds.

Recommendation

Include a state variable `updateThreshold` that determines the threshold for price
staleness. This can be set in the constructor. `updateThreshold` can be used inside
`getLatestPrice` to change the behavior of the function depending on whether the price
is stale. There are two different possibilities:

1. If the price is determined to be stale, return `-1` in place of `price` and include in
documentation and Natspec comments for contract developers to include a check for
staleness

Hashlock Pty Ltd

75

Status

Resolved

[H-02] StakingDepositUpgradeable#unstake - Function is vulnerable to
re-entrancy attacks

Description

The `unstake` function does not follow the Checks-Effects-Interaction (CEI) pattern and
is vulnerable to a re-entrancy attack that can drain the `StakingDepositUpgradeable`
contract.

Vulnerability Details

The `unstake` function transfers the depositor's `depositedAmount` before resetting their
balance to 0. This is an 'interaction' before 'effects' and hence is vulnerable to
re-entrancy.

An attacker can call `unstake` again as a callback after they receive the native tokens,
allowing the same amount of tokens to be withdrawn recursively until the
`StakingDepositUpgradeable` contract is drained.

Hashlock Pty Ltd

76

Impact

The `StakingDepositUpgradeable` contract will be drained completely of all of its native
tokens.

Recommendation

Follow the CEI pattern by resetting the depositor's `depositedAmount` to 0 before
sending the native token as shown:

Status

Resolved

[H-03] PriceFeedContract - Contract does not specify decimals of `price`

Description The price feed does not indicate the number of decimals of `price`. This can
result in incorrect integrations.

Vulnerability Details It is good practice for price feeds to also indicate the number of
decimals of `price`. This makes sure that contracts that read from the price feed know
the correct number of decimals to use. This is especially the case if the unit of
denomination is an asset that does not have a specified number of decimals.

Impact Contracts that read from the price feed may assume the wrong number of
decimals, resulting in incorrect prices.

Recommendation The contract can specify a standard number of decimals and make it
clear in documentations and comments. A good number of decimals to use is 18.
Another option is to add a new state variable for the number of decimals which is set in
the constructor and return that information inside `getLatestPrice`.

Status Resolved

Medium

Hashlock Pty Ltd

77

[M-01] StakingDepositUpgradeable#canUnstake - Cool-off period uses
`depositTimestamp` as the start time

Description

The `canUnstake` modifier checks if the cool-off period is complete by using the
`depositTimestamp` as the start time. This is incorrect

Vulnerability Details

The `canUnstake` modifier checks if the cool-off period is complete by using the
`depositTimestamp` as the start time instead of the `coolOffStartTimestamp` mapping.
```solidity require( block.timestamp >= deposits[_msgSender()].depositTimestamp +
coolOffPeriod, "Cool-off Period not complete" ); ``` This allows nodes to withdraw their
stake before their actual cooloff period has finished.

Impact

A node operator can unstake before the cool-off period is complete.

Recommendation

Create a new `public view` function to determine if the node has completed the cool-off
period. An example of one is shown below:

Status

Unresolved

[M-02] BusinessIdentifierFactory#deployContract - Businesses can be griefed by
IDPs overwriting their `businessContracts` mapping value

Description

Hashlock Pty Ltd



78

The `deployContract` function does not contain any verification checks to ensure that
the user calling the function represents the business. Another user can grief the
business by overwriting their `BusinessIdentifier` contract with another one.

Vulnerability Details

The `deployContract` function uses the `onlyIDP` modifier for access control. However,
there is no checks to ensure that the `msg.sender` is associated to the given
`_businessPublicAddress`, or if the `_businessPublicAddress` is already associated with a
`BusinessIdentifier` contract. This makes it possible for another IDP to grief the business
by overwriting their `BusinessIdentifier` contract with another one by calling
`deployContract` with the same `_businessPublicAddress`. The business cannot revert the
changes and will have to deploy a new `BusinessIdentifier` contract to replace it.

Impact

The business will have their `BusinessIdentifier` contract overwritten, and the
parameters of the new contract can be arbitrarily set by the griefer.

Recommendation

Two checks should be performed in the `deployContract` function to restrict its use: 1.
Require that the `_businessPublicAddress` inputted does not already have a
`BusinessIdentifier` contract associated to it. 2. Require proof that the
`_businessPublicAddress` intended to deploy the contract with the given arguments. This
can be done via EIP-712 signatures, or by limiting calls to the `deployContract` function
to the `_businessPublicAddress` itself.

Status

Acknowledged

[M-03] PermissionUpgradeable#enablePermissionedAccess - Function is missing
access control

Description

The `enablePermissionedAccess` function does not have access control checks, allowing
anyone to enable permissioned access.

Vulnerability Details

The `isPermissionedAccessEnabled` boolean state variable determines if access control
is enabled for contracts that inherit from the `PermissionUpgradeable` contract.
Permissioned access control is enabled by calling the `enablePermissionedAccess`
function, which does not have any access control itself. This means that any user can
enable permissioned access control, even when it's not intended by the contract owner.

Impact

Hashlock Pty Ltd



79

A malicious user can grief and cause DoS for other users if they call
`enablePermissionedAccess`.

Recommendation

Add the `onlyOwner` modifier from `RBACUpgradeable` to `enablePermissionedAccess`,
so that the function can only be called by the contract owner.

Status

Resolved

[M-04] NetworkConfigurationUpgradeable#initialize - Candidate nodes have
incorrect config

Description

The `initialize` function uses bootstrap nodes' `signingAddress` instead of candidate
nodes' `signingAddress` inside the `NodeConfig`.

Vulnerability Details

Inside `initialize`, the signing address of bootstrap nodes is assigned inside the
`NodeConfig` of candidate nodes

` This results in candidate nodes having the same signing address as bootstrap nodes. If
there are more candidate nodes than bootstrap nodes, the `initialize` call will fail and the
contract will not be able to be deployed. If the `initialize` call does not revert, then the
`removeNodeDetailsFromNetwork` function will delete the incorrect
`signingAddressToNodeAddress` mapping value.

Hashlock Pty Ltd



80

The `signingAddressToNodeAddress` mapping is used to check if a node address is a
governor inside the `ActivityMonitorUpgradeable.isGovernor` function, which is used by
the `ActivityMonitorUpgradeable.onlyGovernor` modifier. This modifier is used as access
control in `ActivityMonitorUpgradeable.addProposal` and
`ActivityMonitorUpgradeable.vote`. The `removeNodeDetailsFromNetwork` function is
called when a governor is to be jailed after a vote. This means that whenever a
candidate inserted at initialization is jailed, a bootstrap node is no longer able to call
`ActivityMonitorUpgradeable.addProposal` or `ActivityMonitorUpgradeable.vote`.

Impact

A candidate being jailed results in another bootstrap node being unable to add new
proposals or vote in the Activity Monitor.

Recommendation

Use the candidate node's `signingAddress` instead of the bootstrap node's
`signingAddress` inside the `NodeConfig`.

Hashlock Pty Ltd



81

Status

Resolved

[M-05] NodeRecordStorage#insert/remove - No checks to make sure that
`nodeAddr` exists/doesn't exist

Description

There is no check in `insert` to make sure that `nodeAddr` doesn't already exist inside the
`NodeRecord` struct, and no check in `remove` to make sure that `nodeAddr` exists. This
results in the node address and index mapping being out of sync and having duplicate
values.

Vulnerability Details

When trying to insert a `nodeAddr` that already exists, its `nodeAddressToIndx` value
gets replaced with the latest index:

Hashlock Pty Ltd



82

When trying to remove a `nodeAddr` that doesn't exist, the node at index 0 gets
removed from the `nodeIndxToAddress` mapping as described below:

Both of these situations lead to the two mappings being out of sync, pointing to
incorrect values and also having duplicate values. However, the node originally at index
0 does not get deleted from the `nodeAddressToIndx` mapping, resulting in it being out
of sync with `nodeIndxToAddress

Impact

For `insert`: 1. The original index value of `nodeAddr` is replaced with
`nodeCounter.current()`. 2. Because the original node index is not removed from
`nodeIndxToAddress`, there are now two indexes (original index and current index)
which now point to `nodeAddress`. For `remove`: 1. The node at index 0 is
unintentionally removed from the `nodeAddressToIndx` mapping. 2. Because the node at
index 0 is not removed from `nodeAddressToIndx`, this results in the two mappings
being out of sync. This now means that there are now two addresses (original index 0
node and node at index `nodeCounter.current()`) that point to index 0. This finding is
related to [M-09]

Recommendation

Hashlock Pty Ltd



83

Status

Resolved

[M-06] JailedGovernorsUpgradeable#free - `jailTenures` only stores latest jail time

Description

The `jailTenures` mapping is supposed to store the aggregate duration of time that a
governor has been jailed for. However, the mapping only stores the duration of the
latest jail.

Vulnerability Details

The `jailTenures` mapping is supposed to store the aggregate duration of time that a
governor has been jailed for. However, the mapping only stores the duration of the
latest jail as indicated in the `free` function: ```solidity function free( address _governor )
external onlyActivityMonitorContract notTombstoned(_governor) returns (bool) { ...
jailTenures[_governor] = block.timestamp - jailStartTimestamps[_governor]; ... } ``` Since
`jailTenures` is used inside `StakingDepositUpgradeable.canUnstake` modifier to
determine if a node can initiate their cool-off or unstake, this means that the node can
perform these actions earlier than intended.

Impact

A node that has been jailed can initiate their cool-off and unstake earlier than intended.

Recommendation

Hashlock Pty Ltd



84

Fix the calculation of `jailTenures[_governor]` to be `+=` instead of `=`: ```diff function
free( address _governor ) external onlyActivityMonitorContract
notTombstoned(_governor) returns (bool) { ... - jailTenures[_governor] = +
jailTenures[_governor] += block.timestamp - jailStartTimestamps[_governor]; ... } ```

Status

Unresolved

[M-07] StakingDepositUpgradeable#unstake - Function is marked as `payable`

Description

The `unstake` function is marked as `payable`. Any tokens sent will be lost.

Vulnerability Details

The `unstake` function allows a node to unstake their tokens from the network and
receive back their staked tokens. It should not be accepting native tokens via the
`payable` keyword. Since there is no logic in the function to account for `msg.value`, any
native tokens sent to the contract via the `unstake` function will be lost.

Impact

Users who send tokens via `unstake` will lose them.

Recommendation

Remove the `payable` keyword.

Status

Acknowledged

[M-08] NetworkConfiguration#initialize - Candidate nodes do not get added to
`signingAddressToNodeAddress` mapping

Description

Initialized candidate nodes do not get added to the `signingAddressToNodeAddress`
mapping. This means that once these candidate nodes become governors, they cannot
vote in or create new proposals.

Vulnerability Details

The `initialize` function adds initial candidate nodes into the `candidates` `NodeRecord`.
However, it does not store the signing address of the candidate nodes

Hashlock Pty Ltd



85

The `signingAddressToNodeAddress` mapping is accessed by
`ActivityMonitor.getNodeAddressUsingSignerAddress` for access control. Hence, an initial
candidate that is now a governor will not be able to vote or add new proposals.

Impact

Initialized candidates who are now governors will not be able to vote or add new
proposals in `ActivityMonitor`.

Recommendation

Add the candidate's signing address to the `signingAddressToNodeAddress` mapping.

Status

Resolved

Low

[L-01] RBACUpgradeable & ContractRoleAuthUpgradeable - Role identifiers can be
made `constant`

Description

The role identifiers inside the `RBACUpgradeable` and `ContractRoleAuthUpgradeable`
contract can be made `constant`, instead of being initialized in the `initialize` function.
This is safe to do for upgradeable contracts since constants are stored in the contract's
bytecode instead of storage. This is best practice as recommended by the OpenZeppelin
Natspec documentation. ```solidity /** * ... * Roles are referred to by their `bytes32`
identifier. These should be exposed * in the external API and be unique. The best way to

Hashlock Pty Ltd



86

achieve this is by * using `public constant` hash digests: * * ```solidity * bytes32 public
constant MY_ROLE = keccak256("MY_ROLE"); * ``` * ... */ ```

Recommendation

Make the role identifiers `constant` instead of initializing them in the `initialize` function.
In `RBACUpgradeable`: ```solidity bytes32 public constant OWNER_ROLE =
keccak256("OWNER_ROLE"); bytes32 public constant REDBELLY_ROLE =
keccak256("REDBELLY_ROLE"); bytes32 public constant IDP_ROLE =
keccak256("IDP_ROLE"); bytes32 public constant REDBELLY_NODE_OPERATOR_ROLE =
keccak256("REDBELLY_NODE_OPERATOR_ROLE"); bytes32 public constant
GOVERNOR_ROLE = keccak256("GOVERNOR_ROLE"); ``` In
`ContractRoleAuthUpgradeable`: ```solidity bytes32 public constant
RECONFIGURATION_CONTRACT_ROLE =
keccak256("RECONFIGURATION_CONTRACT_ROLE"); bytes32 public constant
ACTIVITY_MONITOR_CONTRACT_ROLE =
keccak256("ACTIVITY_MONITOR_CONTRACT_ROLE"); bytes32 public constant
JAILED_GOVERNORS_CONTRACT_ROLE =
keccak256("JAILED_GOVERNORS_CONTRACT_ROLE"); bytes32 public constant
NETWORK_CONFIG_CONTRACT_ROLE =
keccak256("NETWORK_CONFIG_CONTRACT_ROLE"); ``` Make sure the `initialize` function
does not initialize the role identifiers again since they're now `constant`.

Status

Acknowledged

[L-02] ActivityMonitorUpgradeable#setDaysToServe - Can only set up to 255 days
to serve in jail

Description

The `_daysToServe` input parameter is `uint8` which means that the maximum number
of days that can be set is 255.
Recommendation

Change the `_daysToServe` input parameter to `uint256`.

Status

Acknowledged

[L-03] JailedGovernorsUpgradeable#initialize - No input validation on `_slashPrcnt`

Description

The `_slashPrcnt` input parameter is not validated to be between 0 and 100. The
contract deployer can set it to a value more than 100%.

Recommendation

Hashlock Pty Ltd



87

Add input validation to `_slashPrcnt` to ensure it is between 0 and 100. ```solidity
function initialize( uint _daysToServe, uint8 _slashPrcnt, address
_bootstrapContractsRegistry ) public initializer {
ContractRoleAuthUpgradeable.initialize(); bootstrapContractsRegistry =
BootstrapContractsRegistry( _bootstrapContractsRegistry ); require(_slashPrcnt <= 100,
"Slash percentage cannot be more than 100") daysToServe = _daysToServe; slashPrcnt
= _slashPrcnt; address activityMonitor =
bootstrapContractsRegistry.getContractAddress( "activitymonitor" );
_grantRole(ACTIVITY_MONITOR_CONTRACT_ROLE, activityMonitor); } ```

Status Acknowledged

[L-04] JailedGovernorsUpgradeable - `tombstonedContracts` and
`stakingDepository` state variables are being incorrectly used

Description

The `tombstonedContracts` and `stakingDepository` state variables are being used as if
they are `memory` variables. They are set each time either `jail` or `free` is called.
```solidity (tombstonedContract, stakingDepository) = getTombstonedAndStaking(); ```
Instead, they should be set once in the `initialize` function.

Recommendation

Set the `tombstonedContracts` and `stakingDepository` state variables in the `initialize`
function and remove the lines in `jail` and `free` where they're set again. If these
addresses are frequently changing, then the `tombstonedContract` and
`stakingDepository` state variables aren't needed and the `jail` and `free` functions can
call `BootstrapContractsRegistry.getContractAddress` can get their addresses each time
they're required.

Status

Acknowledged

[L-05] Contracts make use of the deprecated `Counters` library

Description Many of Redbelly's smart contracts make use of OpenZeppelin's `Counters`
library. This library has been deprecated and removed from v5.0 of OpenZeppelin's
contracts, and may cause issues in the future when the contract's dependencies are
updated.

Recommendation

Instead of using the `Counters` library, make use of normal `uint256` variables as
counters and increment/decrement them using native Solidity.

Status Acknowledged

Hashlock Pty Ltd

88

[L-06] RedbellyContractRegistry#register - Function does not emit event

Description The `register` function does not emit the `RegistryUpdated` event to
indicate that a new contract has been registered.

Recommendation

Emit the event at the end.

Status

Acknowledged ### [L-07] TokenVestingUpgradeable#haveEnoughTokens - Contract
needs to be overfunded to pass modifier check

Description

The `haveEnoughTokens` contains the following `require` statement to check if the
contract has enough tokens to allocate ```solidity require(totalAllocatedTokens +
_amount <= address(this).balance, "Not enough tokens to allocate"); ```
`totalAllocatedTokens` is the total amount of tokens that have been allocated throughout
the life of the contract. Its value is non-decreasing. This does not take into account
tokens that have already been vested, meaning that the contract needs to be
overfunded for allocations to be made.

Recommendation

Instead of using `totalAllocatedTokens`, keep track of the total number of tokens that
are still vesting `totalVestingTokens`. This value decreases each time `claimTokens` is
called. The new `require` statement becomes: ```solidity require(totalVestingTokens +
_amount <= address(this).balance, "Not enough tokens to allocate"); ```

Status

Resolved

[L-08] ActivityMonitorUpgradeable#jail - Governor can be jailed again even though
they're currently jailed

Description

There is no check to ensure that if a governor is currently jailed, then they can not be
jailed again. This can lead to the governor being unfairly jailed again.

Recommendation

Include a check inside `JailedGovernorsUpgradeable.jail` to make sure that a governor
currently being jailed cannot be jailed again. ```diff function jail(address _governor)
external onlyActivityMonitorContract { ... require(
!tombstonedContract.isTombstoned(_governor), "node address is tombstoned"); +
require(+ !isJailedGovernor(_governor), + "node address is still jailed" +); ... } ```

Hashlock Pty Ltd

89

Status

Acknowledged ### [L-09] NetworkConfigurationUpgradeable#initialize - Potential
incorrect candidate node configuration

Description

The `initialize` function allows candidate node IDs to be arbitrarily set. They could
potentially be accidentally set incorrectly which could lead to duplicate IDs or IDs that
are out of range.

Recommendation

Use `idCounter.current()` and `idCounter.increment()` for candidate node IDs.

Status

Resolved

[L-10] ActivityMonitorUpgradeable#endVoting - Delayed jailing due to access
control

Description

The `endVoting` function can only be called by the Redbelly team. This can result in
significant delays and damage to the network, since jailing a malicious node requires
input from the Redbelly team.

Recommendation

Remove the `onlyRedbelly` modifier from `endVoting` and replace it with the
`onlyGovernor` modifier. Since `endVoting` calls `jail` which also uses the `onlyRedbelly`
modifier, the logic inside `jail` will need to be moved to a private function `_jail` which
does not contain the modifier. The `jail` public function can do an internal call to `_jail`.

Status

Unresolved

Gas

[G-01] StakingDepositUpgradeable#initialize - `stakeDuration` is set twice

Description

The following line appears twice inside the `initialize` function. ```solidity stakeDuration =
30 days; ```

Recommendation

Hashlock Pty Ltd

90

Remove one of the lines.

Status

Acknowledged

[G-02] NetworkConfigurationUpgradeable#removeRedbellyNodes - Loop continues
after deleting node

Status

Acknowledged

Hashlock Pty Ltd

91

Penetration Test Summary
Goals

The primary goal of this audit was to identify and assess potential security risks within
the Redbelly Network, a layer 1 blockchain written in Golang. These security risks could
range from coding vulnerabilities to potential flaws within the network's underlying
consensus protocol. Our comprehensive audit and infrastructure hardening aimed to
ensure the Redbelly Network's integrity, confidentiality, and availability, as well as the
robustness of its consensus mechanism.

What We Looked For

During the audit, we focused our attention on the following key aspects:

Code vulnerabilities and optimisations: Our aim was to identify weak coding practices,
lack of error handling, and other potential flaws in the programming.

Blockchain-specific vulnerabilities: Our focus was on smart contract vulnerabilities such
as reentrancy attacks, underflows and overflows, gas limit issues, access control bugs
and front running just to name a few.

Consensus protocol vulnerabilities: We looked for potential race conditions, Sybil
attacks, and other possible flaws within the consensus mechanism that could lead to
unauthorised changes within the Redbelly Network's blockchain.

Tools We Used

For the code audit, we employed a combination of static and dynamic analysis tools,
including:

Gosec (Golang Security Checker): This tool was used to inspect the Golang source code
for security issues within the Redbelly Network.

Golint: for top level analysis and code formatting.

For the penetration testing, we utilised:

Gosec; Security auditing tool

Ganache: A personal sandboxed blockchain used for development testing purposes.

Manual Analysis & Black Box Testing

In addition to the use of automated tools, we conducted manual analysis for a thorough
audit. We reviewed the Redbelly Network's codebase for secure coding practices, error
handling, data validation, and more. Furthermore, we examined the design and
implementation of the consensus protocol for any potential flaws.

Hashlock Pty Ltd

92

We also conducted thorough manual dependency auditing.

In our black box testing, we treated the Redbelly Network as an opaque box with zero
code visibility until a bug was found, focusing on inputs and outputs without the need
to understand the system's internal workings. This approach helped us understand how
the network behaved under various input conditions, and if there were any unexpected
behaviours that could indicate a security risk which includes assessing actions such as
day to day smart contract deployment and edge cases.

Intrusion into Consensus Protocol

The consensus protocol is one of the most critical aspects of a blockchain, ensuring all
nodes agree on the state of the distributed ledger. A successful intrusion into the
consensus protocol could allow an attacker to manipulate the state of the blockchain,
leading to disastrous consequences such as a full network takeover allowing attackers
at propose malicious blocks. Within the Redbelly Network, we scrutinised the consensus
protocol against known vulnerabilities such as Sybil attacks, race conditions, and 51%
attacks. Although our analysis did not reveal any immediate threats, it is vital to
continually update and check this protocol against evolving threat landscapes.

Hashlock also recommends that the Redbelly protocol is mindful of how native tokens
are distributed. A user with an overwhelming amount of native tokens usually has the
authority to stake and control most of the network through malicious proposals of new
blocks through a group of rogue nodes. It is best practice to spread native tokens
amongst the user population as much as possible or create some incentive or activity to
reward users with native tokens as opposed to making them readily available until the
blockchain is fully established with a vast user base.

Conclusion

The audit has provided invaluable insights into the potential security risks associated
with the Redbelly Network, an SEVM blockchain written in Golang. While no major
vulnerabilities were found, it's essential to continue regular audits and testing as new
vulnerabilities and attack vectors can emerge over time. Upholding a commitment to
security will help ensure the resilience and success of the Redbelly Network.

Hashlock Pty Ltd

93

Penetration Test Findings

Penetration Test Overview

Repo Name Repo Link Repo Description
Audit
Branch

Last commit
ID

sevm

https://github.co
m/redbellynetwor
k/sevm The SEVM dev

f4719da5ae
0c0mebbfd0
88a706bd06
fd71705369
b

consensus

https://github.co
m/redbellynetwor
k/consensus

The consensus
system to verify
transactions

consensus-driver

https://github.co
m/redbellynetwor
k/consensus-drive
r

The middleware to
allow the consensus
system to talk to the
SEVM

diablo-benchmark

https://github.co
m/redbellynetwor
k/diablo-benchma
rk

A benchmarking tool
used to test the
above systems

Methodology

The Penetration test is broken down into 4 main areas:

1. Static Analysis
2. Dynamic Analysis
3. Automated Analysis
4. Black box testing

Hashlock Pty Ltd

94

SEVM

Static analysis;

Item Outcome Comment
Threat
Level

GoLang Version 1.18 latest version 1.20 medium

Number of
GoLang modules
1 or more major
versions behind 10

Ideally modules should never be a major
version behind high

Number of
GoLang modules
1 or more minor
versions behind 36

Minor versions often aren't too critical, more
nice to have medium

Number of
GoLang modules
1 or more security
patch versions
behind 13

Patches are generally bug or security fixes,
on need by need basis medium

Number of
GoLang latest
releases older
than 1 year 33

Modules that have the latest release over a
year old can be considered abandoned,
which is a high security concern as no bug or
security patches will be continued to be
released high

Use of unsecure
web protocol
when requesting
external
resources File: client.sh

Try to always use secure protocols where
possible medium

Use of unsecure
web protocol
when requesting
external
resources File: Makefile

Try to always use secure protocols where
possible medium

Hashlock Pty Ltd

95

Module analysis

Module Version
Latest
Version

Current Is
Latest Version Status

Last Release
Date

Days
since
latest
release

github.com/
ethereum/g
o-ethereum v1.10.18 v1.12.0 FALSE

2x Minor
Version Behind 2023/05/25 47

github.com/
go-kit/kit v0.9.0 v0.12.0 FALSE

3x Minor
Version Behind 2021/09/23 656

github.com/
mitchellh/go
-homedir v1.1.0 v1.1.0 TRUE Latest 2019/01/27 1626

github.com/
montanafly
nn/stats v0.7.0 v0.7.1 FALSE

1x Security
Patch Version
Behind 2023/05/11 61

github.com/
prometheus
/client_gola
ng v1.11.1 v1.15.1 FALSE

4x Minor
Version Behind 2023/05/03 69

github.com/
redbellynet
work/conse
nsus-driver v0.17.0 v0.17.0 TRUE Latest 2023/05/05 67

github.com/
redbellynet
work/logger v1.0.0 - FALSE - N/A

github.com/
spf13/cobra v0.0.5 v1.7.0 FALSE

1x Major
Version Behind 2023/04/04 98

Hashlock Pty Ltd

96

github.com/
stretchr/test
ify v1.8.0 v1.8.4 FALSE

4x Security
Patch Version
Behind 2023/05/30 42

go.uber.org/
zap v1.24.0 v1.24.0 FALSE Latest 2022/12/30 193

google.gola
ng.org/grpc v1.48.0 v1.55.0 FALSE

7x Minor
Version Behind 2023/05/04 68

google.gola
ng.org/proto
buf v1.28.0 v1.30.0 FALSE

2x Minor
Version Behind 2023/03/16 117

gopkg.in/urf
ave/cli.v1 v1.20.0 v2.25.5 FALSE

1x Major
Version Behind 2023/05/30 42

gopkg.in/ya
ml.v2 v2.4.0 v3.0.1 FALSE

1x Major
Version Behind 2022/05/27 410

github.com/
StackExcha
nge/wmi

v0.0.0-
2018011
620380
2-5d04
9714c4a
6 v1.1.0 FALSE

1x Major
Version Behind 2019/12/28 1291

github.com/
VictoriaMetr
ics/fastcach
e v1.6.0 v1.12.1 FALSE

6x Minor
Version Behind 2023/02/22 139

github.com/
VividCortex/
gohistogram v1.0.0 v1.0.0 TRUE Latest 2017/07/15 2187

github.com/
beorn7/perk
s v1.0.1 v1.0.1 TRUE Latest 2019/07/31 1441

Hashlock Pty Ltd

97

github.com/
btcsuite/btc
d/btcec/v2 v2.2.0 v0.23.3 FALSE

21x Minor
Version Behind 2022/11/01 252

github.com/
cespare/xxh
ash/v2 v2.1.1 v2.2.0 FALSE

1x Minor
Version Behind 2022/12/04 219

github.com/
davecgh/go
-spew v1.1.1 v1.1.1 TRUE Latest 2018/08/17 1789

github.com/
deckarep/go
lang-set v1.8.0 v2.3.0 FALSE

1x Major
Version Behind 2023/03/14 119

github.com/
decred/dcrd
/dcrec/secp
256k1/v4 v4.0.1

release-v1.
7.7 FALSE

7x Minor
Version Behind 2023/04/07 95

github.com/
deepmap/o
api-codegen v1.8.2 v1.13.0 FALSE

5x Minor
Version Behind 2023/06/02 39

github.com/
edsrzf/mma
p-go v1.0.0 v1.1.0 FALSE

1x Minor
Version Behind 2021/12/17 571

github.com/
fjl/memsize

v0.0.0-
2019071
0130421
-bcb579
9ab5e5 v0.0.1 FALSE

1x Security
Patch Version
Behind 2021/07/29 712

github.com/
gballet/go-li
bpcsclite

v0.0.0-
201906
070651
34-2772
fd86a8ff

v0.0.0-201
90607065
134-2772f
d86a8ff TRUE Latest 2019/11/08 1341

Hashlock Pty Ltd

98

github.com/
go-ole/go-o
le v1.2.1 v1.2.1 TRUE Latest 2015/11/05 2805

github.com/
go-stack/st
ack v1.8.0 v1.8.1 FALSE

1x Security
Patch Version
Behind 2021/08/18 692

github.com/
golang-jwt/j
wt/v4 v4.3.0 v5.0.0 FALSE

1x Major
Version Behind 2023/04/17 85

github.com/
golang/prot
obuf v1.5.2 v1.5.3 FALSE

1x Security
Patch Version
Behind 2023/03/08 125

github.com/
golang/snap
py v0.0.4 v0.0.4 TRUE Latest 2021/06/08 763

github.com/
google/uuid v1.2.0 v1.3.0 FALSE

1x Minor
Version Behind 2021/07/12 729

github.com/
gorilla/webs
ocket v1.4.2 v1.5.0 FALSE

1x Minor
Version Behind 2022/02/15 511

github.com/
graph-goph
ers/graphql-
go v1.3.0 v1.5.0 FALSE

2x Minor
Version Behind 2022/12/19 204

github.com/
hashicorp/g
o-bexpr v0.1.10 v0.1.12 FALSE

2x Security
Patch Version
Behind 2023/04/26 76

github.com/
hashicorp/g
olang-lru

v0.5.5-0
.202101
041405
57-80c9

v2.0.3 FALSE
2x Major
Version Behind 2023/06/06 35

Hashlock Pty Ltd

99

8217689
d

github.com/
holiman/blo
omfilter/v2 v2.0.3 v2.0.3 TRUE Latest 2020/12/20 933

github.com/
holiman/uin
t256 v1.2.0 v1.2.2 FALSE

2x Security
Patch Version
Behind 2023/03/22 111

github.com/
huin/goupn
p v1.0.3 v1.2.0 FALSE

2x Minor
Version Behind 2023/05/10 62

github.com/i
nconshrevea
ble/mousetr
ap v1.0.0 v1.0.0 TRUE Latest 2017/07/29 2173

github.com/i
nfluxdata/in
fluxdb v1.8.3 v2.7.1 FALSE

1x Major
Version Behind 2023/04/28 74

github.com/i
nfluxdata/in
fluxdb-client
-go/v2 v2.4.0 v2.12.3 FALSE

8x Minor
Version Behind 2023/03/29 104

github.com/i
nfluxdata/lin
e-protocol

v0.0.0-
2021031
1194329
-9aa0e3
72d097 v2.2.1 FALSE

2x Major
Version Behind 2021/11/24 594

github.com/
jackpal/go-
nat-pmp v1.0.2 v1.0.2 TRUE Latest 2019/11/16 1333

Hashlock Pty Ltd

100

github.com/
klauspost/c
puid/v2 v2.0.9 v2.2.5 FALSE

2x Minor
Version Behind 2023/06/02 39

github.com/
mattn/go-c
olorable v0.1.8 v0.1.13 FALSE

5x Security
Patch Version
Behind 2022/08/15 330

github.com/
mattn/go-is
atty v0.0.12 v0.0.19 FALSE

7x Security
Patch Version
Behind 2023/03/23 110

github.com/
mattn/go-ru
newidth v0.0.9 v0.0.14 FALSE

5x Security
Patch Version
Behind 2022/09/20 294

github.com/
matttproud/
golang_prot
obuf_extens
ions v1.0.1 v2.0.0 FALSE

1x Major
Version Behind 2022/10/26 258

github.com/
mitchellh/m
apstructure v1.4.1 v1.5.0 FALSE

1x Minor
Version Behind 2022/04/21 446

github.com/
mitchellh/po
interstructur
e v1.2.0 v1.2.1 FALSE

1x Security
Patch Version
Behind 2021/11/03 615

github.com/
olekukonko/
tablewriter v0.0.5 v0.0.5 TRUE Latest 2021/02/11 880

github.com/
opentracing
/opentracin
g-go v1.1.0 v1.2.0 FALSE

1x Minor
Version Behind 2020/07/01 1105

Hashlock Pty Ltd

101

github.com/
peterh/liner

v1.1.1-0.
2019012
317454
0-a2c9a
5303de
7 v1.2.2 FALSE

1x Minor
Version Behind 2022/01/15 542

github.com/
pkg/errors v0.9.1 v0.9.1 TRUE Latest 2020/01/14 1274

github.com/
pmezard/go
-difflib v1.0.0 v1.0.0 TRUE Latest 2016/08/08 2528

github.com/
prometheus
/client_mod
el v0.2.0 v0.4.0 FALSE

2x Minor
Version Behind 2023/05/03 69

github.com/
prometheus
/common v0.26.0 v0.44.0 FALSE

18x Minor
Version Behind 2023/05/22 50

github.com/
prometheus
/procfs v0.6.0 v0.10.1 FALSE

4x Minor
Version Behind 2023/05/28 44

github.com/
prometheus
/tsdb v0.7.1 v0.10.0 FALSE

3x Minor
Version Behind 2019/07/24 1448

github.com/
rjeczalik/not
ify v0.9.1 v0.9.3 FALSE

2x Security
Patch Version
Behind 2023/01/13 179

github.com/
rs/cors v1.7.0 v1.7.0 TRUE Latest 2019/08/08 1433

Hashlock Pty Ltd

102

github.com/
shirou/gops
util

v3.21.4-
0.20210
419000
835-c7a
38de76e
e5+inco
mpatible v3.23.5 FALSE

2x Minor
Version Behind 2023/06/02 39

github.com/
spf13/pflag v1.0.5 v1.0.5 TRUE Latest 2019/09/18 1392

github.com/
status-im/k
eycard-go

v0.0.0-
2019031
609033
5-8537d
3370df4 v0.2.0 FALSE

2x Minor
Version Behind 2022/11/08 245

github.com/
syndtr/golev
eldb

v1.0.1-0
.202108
190228
25-2ae1
ddf74ef
7 v1.0.1 FALSE Latest 2019/02/22 1600

github.com/
tklauser/go-
sysconf v0.3.5 v0.3.11 FALSE

6x Security
Patch Version
Behind 2022/11/09 244

github.com/
tklauser/nu
mcpus v0.2.2 v0.6.1 FALSE

4x Minor
Version Behind 2023/06/02 39

github.com/
tyler-smith/
go-bip39

v1.0.1-0
.201810
170606
43-dbb3
b84ba2e
f v1.1.0 FALSE

1x Minor
Version Behind 2020/10/27 987

go.uber.org/
atomic v1.9.0 v1.11.0 FALSE

2x Minor
Version Behind 2023/05/03 69

Hashlock Pty Ltd

103

go.uber.org/
multierr v1.7.0 v1.11.0 FALSE

4x Minor
Version Behind 2023/03/29 104

golang.org/
x/crypto v0.1.0 v0.9.0 FALSE

8x Minor
Version Behind 2023/05/08 64

golang.org/
x/net v0.7.0 v0.10.0 FALSE

3x Minor
Version Behind 2023/05/04 68

golang.org/
x/sync

v0.0.0-
202207
2215525
5-886fb
9371eb4 v0.2.0 FALSE

2x Minor
Version Behind 2023/04/19 83

golang.org/
x/sys v0.5.0 v0.8.0 FALSE

3x Minor
Version Behind 2023/05/03 69

golang.org/
x/text v0.7.0 v0.9.0 FALSE

2x Minor
Version Behind 2023/04/04 98

golang.org/
x/time

v0.0.0-
202102
200331
41-f8bd
a1e9f3b
a v0.3.0 FALSE

3x Minor
Version Behind 2022/11/16 237

google.gola
ng.org/genp
roto

v0.0.0-
202005
2621185
5-cb27e
3aa2013

v0.0.0-20
230530153
820-e85fd
2cbaebc FALSE Latest 2023/05/30 42

gopkg.in/nat
efinch/npipe
.v2

v2.0.0-
201606
210349
01-c1b8
fa8bdcc
e

v2.0.0-201
60621034
901-c1b8fa
8bdcce TRUE Latest 2016/06/21 2576

Hashlock Pty Ltd

104

gopkg.in/ya
ml.v3 v3.0.1 v3.0.1 TRUE Latest 2022/05/27 410

lukechampin
e.com/blake
3 v1.1.7 v1.2.1 FALSE

1x Minor
Version Behind 2023/05/15 57

Summary;

Major Versions Behind 10

Minor Versions Behind 36

Security Patch Versions Behind 13

Latest Releases older than 1 year 33

SEVM Code Analysis;

File Line Pos Message
Risk
Level Comment

databas
e/tracer.
go 50 4

t.Logger undefined (type
EthDBTracer has no field or
method Logger) (typecheck) low

Update type to include
Logger

databas
e/tracer.
go 54 5

t.Logger undefined (type
EthDBTracer has no field or
method Logger) (typecheck) low

Update type to include
Logger

databas
e/tracer.
go 64 5

t.Logger undefined (type
EthDBTracer has no field or
method Logger) (typecheck) low

Update type to include
Logger

redbelly
client/re
dbellycli
ent.go 19 36

undefined: ethereum
(typecheck) low can be ignored

Hashlock Pty Ltd

105

redbelly
client/re
dbellycli
ent.go 69 18

undefined: ethereum
(typecheck) low can be ignored

fs/io.go 15 3

use of `fmt.Println` forbidden
by pattern
`^(fmt\.Print(|f|ln)|print|prin
tln)$` (forbidigo) low

%w generally is used for
logging errors, if possible
update to using a dedicate
logging module

network
/networ
k.go 48

File is not `gofumpt`-ed
(gofumpt) low

check the file formatting for
best practises (gofumpt)

go.mod 5 1

replacement are not
allowed:
github.com/ethereum/go-et
hereum (gomoddirectives) low

generally not best practise
as it should only be used for
overridding unsecure
module versions, however
should be fine in this
instance

network
/networ
k.go 33 line is 568 characters (lll) low

if possible, move string into
its own file, however this
only affects code
readability

fs/dir.go 18 2

assignments should only be
cuddled with other
assignments (wsl) low

styling code format, can be
ignored

fs/dir.go 23 3

return statements should not
be cuddled if block has more
than two lines (wsl) low

styling code format, can be
ignored

fs/dir.go 19 2

only one cuddle assignment
allowed before if statement
(wsl) low

styling code format, can be
ignored

fs/dir.go 25 2

only one cuddle assignment
allowed before defer
statement (wsl) low

styling code format, can be
ignored

fs/dir.go 42 2

return statements should not
be cuddled if block has more
than two lines (wsl) low

styling code format, can be
ignored

network
/networ
k.go 37 2

missing cases in switch of
type network.Network:
network.OtherNetwork
(exhaustive) low

ideally all network modes
should have an explicit
case, however as the
default only logs an error, it

Hashlock Pty Ltd

106

should be safe to leave as is

network
/networ
k.go 46 2

missing cases in switch of
type network.Network:
network.OtherNetwork
(exhaustive) low

ideally all network modes
should have an explicit
case, however as the
default only logs an error, it
should be safe to leave as is

types/sa
fetypes/
safemap
_string_i
nt.go 13 10

mu is missing in
SafeMapStringInt
(exhaustivestruct) low false positive - ignore

types/sa
fetypes/
safemap
_uint64.
go 11 10

mutex is missing in
SafeUint64
(exhaustivestruct) low false positive - ignore

network
/networ
k.go 32 5

Keystore is a global variable
(gochecknoglobals)

mediu
m

depending on the intended
use of the variable, it is
usually always best practice
to limit the scope of any
variable as much as
possible, and prevent global
variables

fs/dir.go 15 10

err113: do not define
dynamic errors, use
wrapped static errors
instead: "fmt.Errorf(\"invalid
directory path %v\", name)"
(goerr113) low

where possible, use static
error message, can be
ignored

network
/networ
k.go 41 20

err113: do not define
dynamic errors, use
wrapped static errors
instead: "fmt.Errorf(\"invalid
network selected %s\", n)"
(goerr113) low

where possible, use static
error message, can be
ignored

network
/networ
k.go 55 31

err113: do not define
dynamic errors, use
wrapped static errors
instead: "fmt.Errorf(\"invalid
network selected %s\", n)"
(goerr113) low

where possible, use static
error message, can be
ignored

Hashlock Pty Ltd

107

fs/dir.go 38 2

variable 'err' is only used in
the if-statement
(fs/dir.go:39:2); consider
using short syntax (ifshort) low

personal preference, having
the variable defined on a
new line is better for
readability - can be ignored

fs/dir.go 16 3
return with no blank line
before (nlreturn) low

personal preference - can
be ignored

SEVM Security Analysis;

File Line Message
Risk
Level Comment

utils/utils
.go 157

Use of weak random number
generator (math/rand instead
of crypto/rand) High

As the method
"RandomIntegers" is
used twice in the
"blockdownloader/block
downloader.go"
package. It should be
reviewed and
determined if it is a
security risk in the
context it is being used
for

https://
redbelly
.atlassi
an.net/
browse
/GRT-9
6

blockdow
nloader/
grpc_clie
nt.go 37

TLS InsecureSkipVerify set
true. High

As the current
implementation
"NewGrpcClient" offers
a bypass self-signed
certificate check which
only appears to be use
for local development,
this can be ignored.
However ensure that
this is not enabled
when in production as it
poses large security risk
for man-in-the-middle
attacks

https://
redbelly
.atlassi
an.net/
browse
/GRT-9
7

tracer/tr
acer.go 29

Potential file inclusion via
variable

Mediu
m

Best practice is to use
hardcoded file names
where possible.
However as this relates
to a log file, it should

https://
redbelly
.atlassi
an.net/
browse

Hashlock Pty Ltd

https://redbelly.atlassian.net/browse/GRT-96
https://redbelly.atlassian.net/browse/GRT-96
https://redbelly.atlassian.net/browse/GRT-96
https://redbelly.atlassian.net/browse/GRT-96
https://redbelly.atlassian.net/browse/GRT-96
https://redbelly.atlassian.net/browse/GRT-96
https://redbelly.atlassian.net/browse/GRT-96
https://redbelly.atlassian.net/browse/GRT-97
https://redbelly.atlassian.net/browse/GRT-97
https://redbelly.atlassian.net/browse/GRT-97
https://redbelly.atlassian.net/browse/GRT-97
https://redbelly.atlassian.net/browse/GRT-97
https://redbelly.atlassian.net/browse/GRT-97
https://redbelly.atlassian.net/browse/GRT-97
https://redbelly.atlassian.net/browse/GRT-98
https://redbelly.atlassian.net/browse/GRT-98
https://redbelly.atlassian.net/browse/GRT-98
https://redbelly.atlassian.net/browse/GRT-98
https://redbelly.atlassian.net/browse/GRT-98

108

be fine to leave as is. If
possible, add some
type of file name
validation

/GRT-9
8

Consensus

Static Analysis;

Item Outcome Comment

Thre
at
Leve
l

GoLang Version 1.19 latest version 1.20 low

Number of
GoLang modules
1 or more major
versions behind 0

Ideally modules should never be a major
version behind low

Number of
GoLang modules
1 or more minor
versions behind 2

Minor versions often aren't too critical, more
nice to have low

Number of
GoLang modules
1 or more security
patch versions
behind 1

Patches are generally bug or security fixes,
on need by need basis low

Number of
GoLang latest
releases older
than 1 year 3

Modules that have the latest release over a
year old can be considered abandoned,
which is a high security concern as no bug or
security patches will be continued to be
released high

Module Analysis;

Module Version Latest Version
Current Is
Latest

Versio
n
Status

Last
Release
Date

Days
since
latest
releas
e

github.com/ v0.18.0 v0.18.0 TRUE Latest 2023/06/13 29

Hashlock Pty Ltd

https://redbelly.atlassian.net/browse/GRT-98
https://redbelly.atlassian.net/browse/GRT-98

109

redbellynet
work/conse
nsus-driver

github.com/
redbellynet
work/logger v1.0.0 v1.0.0 TRUE Latest 2023/04/12 91

github.com/
stretchr/test
ify v1.8.0 v1.8.4 FALSE

4x
Securit
y Patch
Version
Behind

2023/05/3
0 43

github.com/
davecgh/go
-spew v1.1.1 v1.1.1 TRUE Latest

2016/08/0
8 2529

github.com/
pmezard/go
-difflib v1.0.0 v1.0.0 TRUE Latest 2018/08/17 1790

go.uber.org/
atomic v1.7.0 v1.11.0 FALSE

4x
Minor
Version
Behind

2023/05/0
3 70

go.uber.org/
multierr v1.6.0 v1.11.0 FALSE

5x
Minor
Version
Behind

2023/03/2
9 105

go.uber.org/
zap v1.24.0 v1.24.0 TRUE Latest 2022/11/30 224

gopkg.in/ya
ml.v3 v3.0.1 v3.0.1 TRUE Latest

2022/05/2
7 411

Summary;

Major Versions Behind 0

Minor Versions Behind 2

Security Patch Versions Behind 1

Latest Releases older than 1 year 3

Consensus code analysis;

Hashlock Pty Ltd

110

File Line Position Message
Risk
Level Comment

configura
tions/poo
l.go 20 23

var-declaration: should omit
type ConnPoolConfig from
declaration of var
DefaultPoolConfig; it will be
inferred from the right-hand
side (revive) low

parser/pa
rser.go 12 10

PeerNodeIds is missing in
NodeConfig (exhaustivestruct) low

make sure to include
all necessary struct
values if required

parser/pa
rser.go 122 10

err113: do not define dynamic
errors, use wrapped static
errors instead:
"fmt.Errorf(\"error: IP isn't
provided in URL string\")"
(goerr113) low

where possible, use
static error message,
can be ignored

configura
tions/poo
l 21 45

mnd: Magic number: 100, in
<assign> detected (gomnd) low can be ignored

parser/pa
rser.go 81 41

mnd: Magic number: 2, in
<argument> detected (gomnd) low can be ignored

parser/pa
rser.go 17 16

mnd: Magic number: 1888, in
<assign> detected (gomnd) low can be ignored

parser/pa
rser.go 25 18

mnd: Magic number: 30, in
<assign> detected (gomnd) low can be ignored

parser/pa
rser.go 69 16

error returned from external
package is unwrapped: sig:
func strconv.Atoi(s string) (int,
error) (wrapcheck) low

where possible try to
wrap errors in
fmt.Errorf() for better
error handling

Consensus Security Analysis;

File Line Position Message
Risk
Level Comment

networks/
dbft_rpc.
go 35 TLS MinVersion too low. low

False positive -
minVersion not
defined

pool/pool
_rpc.go 212 Errors unhandled. medium

Make sure to handle
errors where
possible

Hashlock Pty Ltd

111

pool/pool
_rpc.go 174 Errors unhandled. medium

Make sure to handle
errors where
possible

pool/pool
_rpc.go 20 Errors unhandled. medium

Make sure to handle
errors where
possible

Consensus Driver

Static analysis;

Item Outcome Comment
Threat
Level

GoLang Version 1.19 latest version 1.20 low

Number of
GoLang modules
1 or more major
versions behind 0

Ideally modules should never be a major
version behind low

Number of
GoLang modules
1 or more minor
versions behind 0

Minor versions often aren't too critical,
more nice to have low

Number of
GoLang modules
1 or more security
patch versions
behind 0

Patches are generally bug or security
fixes, on need by need basis low

Number of
GoLang latest
releases older
than 1 year 0

Modules that have the latest release over
a year old can be considered abandoned,
which is a high security concern as no
bug or security patches will be continued
to be released low

Consensus Driver Code analysis;

File
Lin
e Position Message

Risk
Level Comment

consensu
s/consen
sus.go 11 2

protocolsMu is a global
variable (gochecknoglobals)

Mediu
m

where possible limit the
use of global variables.
Ideally try to keep

Hashlock Pty Ltd

112

variables to a narrow
scope

consensu
s/consen
sus.go 12 2

protocols is a global variable
(gochecknoglobals)

Mediu
m

where possible limit the
use of global variables.
Ideally try to keep
variables to a narrow
scope

consensu
s/consen
sus.go 33 15

do not define dynamic errors,
use wrapped static errors
instead:
"fmt.Errorf(\"consensus:
unknown consensus %q
(forgotten import?)\", name)"
(goerr113) low

where possible, use
static error message,
can be ignored

consensu
s/consen
sus.go 46 10

do not define dynamic errors,
use wrapped static errors
instead:
"fmt.Errorf(\"consensus:
Protocol is not registered\")"
(goerr113) low

where possible, use
static error message,
can be ignored

consensu
s/consen
sus.go 27 1

Open returns interface
(github.com/redbellynetwork/
consensus-driver/consensus/p
rotocol.Engine) (ireturn) low

where possible return
interface types instead
of concrete types.
helps to promote low
coupled code

Consensus Driver Security Analysis;

File Line Position Message Risk Level Comment

No issues
reported

Hashlock Pty Ltd

113

Conclusion
After Hashlocks analysis, the Redbelly Network project seems to have a sound and well

tested code base after the resolution of our findings. Overall, most of the code is

correctly ordered and follows industry best practices. The code is extremely well

commented and has great supporting documentation.

Hashlock Pty Ltd

114

Our Methodology

Hashlock strives to maintain a transparent working process and to make our audits a

collaborative effort. The objective of our security audits are to improve the quality of

systems and upcoming projects we review and to aim for sufficient remediation to help

protect users and project leaders. Below is the methodology we use in our security audit

process.

Manual Code Review:

In manually analysing all of the code, we seek to find any potential issues with code

logic, error handling, protocol and header parsing, cryptographic errors, and random

number generators. We also watch for areas where more defensive programming could

reduce the risk of future mistakes and speed up future audits. Although our primary

focus is on the in-scope code, we examine dependency code and behaviour when it is

relevant to a particular line of investigation.

Vulnerability Analysis:

Our methodologies include manual code analysis, user interface interaction, and

whitebox penetration testing. We consider the project's website, specifications, and

whitepaper (if available) to attain a high level understanding of what functionality the

smart contract under review contains. We then communicate with the developers and

founders to gain insight into their vision for the project. We install and deploy the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Hashlock Pty Ltd

115

Documenting Results:

We undergo a robust, transparent process for analysing potential security vulnerabilities

and seeing them through to successful remediation. When a potential issue is

discovered, we immediately create an issue entry for it in this document, even though

we have not yet verified the feasibility and impact of the issue. This process is vast

because we document our suspicions early even if they are later shown to not represent

exploitable vulnerabilities. We generally follow a process of first documenting the

suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this we analyse the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take and finally we

suggest the requirements for remediation engineering for future releases. The

mitigation and remediation recommendations should be scrutinised by the developers

and deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the contracts details are

made public.

Hashlock Pty Ltd

116

Disclaimers

Hashlock’s Disclaimer

Hashlock’s team has analysed these smart contracts in accordance with the best

industry practices at the date of this report, in relation to: cybersecurity vulnerabilities

and issues in the smart contract source code, the details of which are disclosed in this

report, (Source Code); the Source Code compilation, deployment and functionality

(performing the intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no

statements or warranties on security of the code. It also cannot be considered as a

sufficient assessment regarding the utility and safety of the code, bugfree status or any

other statements of the contract. While we have done our best in conducting the

analysis and producing this report, it is important to note that you should not rely on

this report only. We also suggest conducting a bug bounty program to confirm the high

level of security of this smart contract.

Hashlock is not responsible for the safety of any funds, and is not in any way liable for

the security of the project.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its

programming language, and other software related to the smart contract can have their

own vulnerabilities that can lead to attacks. Thus, the audit can’t guarantee explicit

security of the audited smart contracts.

Hashlock Pty Ltd

117

About Hashlock

Hashlock is an Australian based company aiming to help facilitate the successful

widespread adoption of distributed ledger technology. Our key services all have a focus

on security, as well as projects that focus on streamlined adoption in the business

sector.

Hashlock is excited to continue to grow its partnerships with developers and other web3

oriented companies to collaborate on secure innovation, helping businesses and

decentralised entities alike.

Website: hashlock.com.au

Contact: info@hashlock.com.au

Hashlock Pty Ltd

http://hashlock.com.au
mailto:info@hashlock.com.au

118

Hashlock Pty Ltd

